/08/24 12:50:11 54.47 -117.47 3 4.8 Alberta, CanadaNote that the Earthquakes Canada solution is 17.89 km at an azimith of 231 degrees from the USGS NEIC solution. Interestingly the estimation of location error at the bottom of this page indicates that the waveforms would indicate that the true epicenter is 13 km at an azimuth of 226 degrees from the USGS NEIOC solution. The display at the bottom os approximate given the velocity model used and the simplicity of the technique.
Using the Earthquake Canada location, the best solution in shown in the beachball titled SLUFM in the Moment Tensor Comparison below. The depth is 2 km deepder than the USGS solution. The nodal planes are slightly different, but not significsntly. The estimate of the lcoation error is now ssignificantly smaller.
The ANSS event ID is us7000n96l and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us7000n96l/executive.
2024/08/24 12:50:11 54.571 -117.255 9.4 4.2 Alberta, Canada
USGS/SLU Moment Tensor Solution ENS 2024/08/24 12:50:11:0 54.57 -117.25 9.4 4.2 Alberta, Canada Stations used: 1E.MONT1 1E.MONT3 1E.MONT4 1E.MONT5 1E.MONT7 1E.MONT8 1E.MONT9 1E.MONTA 1E.MONTB 1E.MONTC 1E.MONTD 1E.MONTE CN.EDM CN.FNSB CN.FSJB CN.HOPB CN.LLLB CN.PNT CN.WSLR PQ.NAB1 PQ.NBC4 PQ.NBC5 PQ.NBC8 RV.BDMTA RV.BLSTA RV.BRLDA RV.BSLNA RV.EGLEA RV.FAIRA RV.FOXCA RV.KAKWA RV.LGPLA RV.PKSKA RV.REDDA RV.SNUFA RV.STPRA RV.THORA RV.WTMTA RV.YELLA TD.TD002 TD.TD008 TD.TD009 UW.GOBBL XL.MG01 XL.MG04 XL.MG05 XL.MG07 XL.MG09 XL.MG10 XL.MG11 Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 2.60e+22 dyne-cm Mw = 4.21 Z = 5 km Plane Strike Dip Rake NP1 181 76 164 NP2 275 75 15 Principal Axes: Axis Value Plunge Azimuth T 2.60e+22 21 138 N 0.00e+00 69 319 P -2.60e+22 0 228 Moment Tensor: (dyne-cm) Component Value Mxx 8.73e+20 Mxy -2.42e+22 Mxz -6.37e+21 Myy -4.24e+21 Myz 5.97e+21 Mzz 3.36e+21 #######------- ##########------------ ############---------------- #############----------------- ###############------------------- ###############--------------------- ################---------------------- #################----------------------- #################----------------------- ###--------------############------------- -----------------###################------ -----------------#######################-- -----------------######################### ----------------######################## ----------------######################## ----------------###################### ---------------############# ##### - ----------############# T #### P ----------############# ## -----------################ ---------############# ------######## Global CMT Convention Moment Tensor: R T P 3.36e+21 -6.37e+21 -5.97e+21 -6.37e+21 8.73e+20 2.42e+22 -5.97e+21 2.42e+22 -4.24e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240824125011/index.html |
STK = 275 DIP = 75 RAKE = 15 MW = 4.21 HS = 5.0
The NDK file is 20240824125011.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2024/08/24 12:50:11:0 54.57 -117.25 9.4 4.2 Alberta, Canada Stations used: 1E.MONT1 1E.MONT3 1E.MONT4 1E.MONT5 1E.MONT7 1E.MONT8 1E.MONT9 1E.MONTA 1E.MONTB 1E.MONTC 1E.MONTD 1E.MONTE CN.EDM CN.FNSB CN.FSJB CN.HOPB CN.LLLB CN.PNT CN.WSLR PQ.NAB1 PQ.NBC4 PQ.NBC5 PQ.NBC8 RV.BDMTA RV.BLSTA RV.BRLDA RV.BSLNA RV.EGLEA RV.FAIRA RV.FOXCA RV.KAKWA RV.LGPLA RV.PKSKA RV.REDDA RV.SNUFA RV.STPRA RV.THORA RV.WTMTA RV.YELLA TD.TD002 TD.TD008 TD.TD009 UW.GOBBL XL.MG01 XL.MG04 XL.MG05 XL.MG07 XL.MG09 XL.MG10 XL.MG11 Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 2.60e+22 dyne-cm Mw = 4.21 Z = 5 km Plane Strike Dip Rake NP1 181 76 164 NP2 275 75 15 Principal Axes: Axis Value Plunge Azimuth T 2.60e+22 21 138 N 0.00e+00 69 319 P -2.60e+22 0 228 Moment Tensor: (dyne-cm) Component Value Mxx 8.73e+20 Mxy -2.42e+22 Mxz -6.37e+21 Myy -4.24e+21 Myz 5.97e+21 Mzz 3.36e+21 #######------- ##########------------ ############---------------- #############----------------- ###############------------------- ###############--------------------- ################---------------------- #################----------------------- #################----------------------- ###--------------############------------- -----------------###################------ -----------------#######################-- -----------------######################### ----------------######################## ----------------######################## ----------------###################### ---------------############# ##### - ----------############# T #### P ----------############# ## -----------################ ---------############# ------######## Global CMT Convention Moment Tensor: R T P 3.36e+21 -6.37e+21 -5.97e+21 -6.37e+21 8.73e+20 2.42e+22 -5.97e+21 2.42e+22 -4.24e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240824125011/index.html |
Solution using Earthquakes Canada location. Focal Mechanism USGS/SLU Moment Tensor Solution ENS 2024/08/24 12:50:11:0 54.47 -117.47 3.0 4.2 Alberta, Canada Stations used: 1E.MONT1 1E.MONT3 1E.MONT4 1E.MONT5 1E.MONT7 1E.MONT8 1E.MONT9 1E.MONTA 1E.MONTB 1E.MONTC 1E.MONTD 1E.MONTE CN.EDM CN.FNSB CN.FSJB CN.HOPB CN.LLLB CN.PNT CN.WSLR PQ.NAB1 PQ.NBC4 PQ.NBC5 PQ.NBC8 RV.BDMTA RV.BLSTA RV.BRLDA RV.BSLNA RV.EGLEA RV.FAIRA RV.FOXCA RV.KAKWA RV.LGPLA RV.PKSKA RV.REDDA RV.SNUFA RV.STPRA RV.THORA RV.WTMTA RV.YELLA TD.TD002 TD.TD008 TD.TD009 UW.GOBBL XL.MG01 XL.MG04 XL.MG05 XL.MG07 XL.MG09 XL.MG10 XL.MG11 Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 3.31e+22 dyne-cm Mw = 4.28 Z = 7 km Plane Strike Dip Rake NP1 90 80 20 NP2 356 70 169 Principal Axes: Axis Value Plunge Azimuth T 3.31e+22 21 315 N 0.00e+00 68 116 P -3.31e+22 7 222 Moment Tensor: (dyne-cm) Component Value Mxx -3.87e+21 Mxy -3.06e+22 Mxz 1.06e+22 Myy -2.68e+15 Myz -5.40e+21 Mzz 3.87e+21 #######------- ############---------- ################------------ ## ############------------- #### T #############-------------- ##### #############--------------- #######################--------------- ########################---------------- #########################--------------- ##########################---------------- ##########################---------------- ---#######################-------------### --------------------------################ -------------------------############### -------------------------############### ------------------------############## -----------------------############# -- ----------------############# P ----------------########### ----------------########## --------------######## ---------##### Global CMT Convention Moment Tensor: R T P 3.87e+21 1.06e+22 5.40e+21 1.06e+22 -3.87e+21 3.06e+22 5.40e+21 3.06e+22 -2.68e+15 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 270 80 -10 3.99 0.3481 WVFGRD96 2.0 270 75 -10 4.11 0.4310 WVFGRD96 3.0 275 85 5 4.14 0.4509 WVFGRD96 4.0 275 75 10 4.19 0.4567 WVFGRD96 5.0 275 75 15 4.21 0.4592 WVFGRD96 6.0 280 75 20 4.23 0.4564 WVFGRD96 7.0 280 75 15 4.24 0.4516 WVFGRD96 8.0 280 75 20 4.28 0.4474 WVFGRD96 9.0 280 75 20 4.29 0.4397 WVFGRD96 10.0 280 75 20 4.30 0.4311 WVFGRD96 11.0 280 75 15 4.31 0.4221 WVFGRD96 12.0 280 75 15 4.32 0.4128 WVFGRD96 13.0 280 75 15 4.33 0.4034 WVFGRD96 14.0 280 80 15 4.34 0.3949 WVFGRD96 15.0 280 80 15 4.35 0.3866 WVFGRD96 16.0 280 80 15 4.36 0.3785 WVFGRD96 17.0 280 80 15 4.37 0.3707 WVFGRD96 18.0 280 80 15 4.37 0.3634 WVFGRD96 19.0 275 80 10 4.38 0.3575 WVFGRD96 20.0 275 80 10 4.39 0.3512 WVFGRD96 21.0 280 75 10 4.39 0.3459 WVFGRD96 22.0 280 75 10 4.40 0.3413 WVFGRD96 23.0 280 75 15 4.41 0.3378 WVFGRD96 24.0 280 75 15 4.42 0.3349 WVFGRD96 25.0 280 75 15 4.43 0.3320 WVFGRD96 26.0 280 75 15 4.43 0.3285 WVFGRD96 27.0 280 75 15 4.44 0.3248 WVFGRD96 28.0 280 75 15 4.45 0.3202 WVFGRD96 29.0 190 80 15 4.45 0.3164
The best solution is
WVFGRD96 5.0 275 75 15 4.21 0.4592
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00