The ANSS event ID is ak0249ly3xrw and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0249ly3xrw/executive.
2024/07/27 18:12:14 60.312 -152.300 85.8 4.3 Alaska
USGS/SLU Moment Tensor Solution ENS 2024/07/27 18:12:14:0 60.31 -152.30 85.8 4.3 Alaska Stations used: AK.BRLK AK.CUT AK.FIRE AK.GHO AK.HOM AK.KNK AK.L19K AK.L22K AK.M20K AK.N18K AK.O18K AK.O19K AK.P23K AK.RC01 AK.SAW AK.SLK AK.SWD AV.PLBL II.KDAK Filtering commands used: cut o DIST/3.5 -50 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 5.75e+22 dyne-cm Mw = 4.44 Z = 102 km Plane Strike Dip Rake NP1 304 64 146 NP2 50 60 30 Principal Axes: Axis Value Plunge Azimuth T 5.75e+22 41 265 N 0.00e+00 49 91 P -5.75e+22 3 358 Moment Tensor: (dyne-cm) Component Value Mxx -5.71e+22 Mxy 4.78e+21 Mxz -5.00e+21 Myy 3.22e+22 Myz -2.83e+22 Mzz 2.49e+22 ----- P ------ --------- ---------- ---------------------------- ------------------------------ ---------------------------------# ############----------------------## ##################----------------#### ######################------------###### #########################--------####### ############################-----######### ####### ####################--########## ####### T #####################-########## ####### ###################-----######## ##########################--------###### ########################-----------##### #####################--------------### #################------------------# ###########----------------------- ------------------------------ ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.49e+22 -5.00e+21 2.83e+22 -5.00e+21 -5.71e+22 -4.78e+21 2.83e+22 -4.78e+21 3.22e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240727181214/index.html |
STK = 50 DIP = 60 RAKE = 30 MW = 4.44 HS = 102.0
The NDK file is 20240727181214.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -50 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 300 60 -45 3.63 0.2457 WVFGRD96 4.0 315 65 5 3.65 0.2728 WVFGRD96 6.0 315 70 5 3.72 0.2932 WVFGRD96 8.0 315 70 10 3.80 0.2992 WVFGRD96 10.0 315 70 10 3.84 0.2978 WVFGRD96 12.0 315 70 5 3.87 0.2872 WVFGRD96 14.0 315 70 0 3.89 0.2690 WVFGRD96 16.0 315 70 -5 3.90 0.2454 WVFGRD96 18.0 225 90 20 3.92 0.2331 WVFGRD96 20.0 225 85 20 3.95 0.2347 WVFGRD96 22.0 225 85 20 3.97 0.2437 WVFGRD96 24.0 225 75 15 4.01 0.2693 WVFGRD96 26.0 225 75 15 4.04 0.2985 WVFGRD96 28.0 225 75 15 4.07 0.3272 WVFGRD96 30.0 225 75 15 4.09 0.3542 WVFGRD96 32.0 225 75 20 4.12 0.3766 WVFGRD96 34.0 225 75 20 4.14 0.3936 WVFGRD96 36.0 225 80 15 4.15 0.4021 WVFGRD96 38.0 225 85 10 4.18 0.4063 WVFGRD96 40.0 230 70 30 4.26 0.4209 WVFGRD96 42.0 45 90 -15 4.25 0.4131 WVFGRD96 44.0 45 90 -15 4.27 0.4087 WVFGRD96 46.0 45 90 -15 4.28 0.4030 WVFGRD96 48.0 45 75 15 4.30 0.4082 WVFGRD96 50.0 45 75 20 4.32 0.4139 WVFGRD96 52.0 45 75 20 4.33 0.4239 WVFGRD96 54.0 45 70 20 4.34 0.4318 WVFGRD96 56.0 45 70 25 4.35 0.4436 WVFGRD96 58.0 45 70 25 4.36 0.4515 WVFGRD96 60.0 45 70 25 4.36 0.4619 WVFGRD96 62.0 45 70 25 4.37 0.4713 WVFGRD96 64.0 45 70 25 4.37 0.4790 WVFGRD96 66.0 45 70 25 4.38 0.4842 WVFGRD96 68.0 45 70 25 4.38 0.4932 WVFGRD96 70.0 45 65 25 4.39 0.4998 WVFGRD96 72.0 45 65 25 4.39 0.5044 WVFGRD96 74.0 45 65 25 4.40 0.5102 WVFGRD96 76.0 45 65 25 4.40 0.5150 WVFGRD96 78.0 45 65 25 4.40 0.5193 WVFGRD96 80.0 45 65 25 4.41 0.5226 WVFGRD96 82.0 45 65 25 4.41 0.5254 WVFGRD96 84.0 45 65 25 4.41 0.5280 WVFGRD96 86.0 45 65 25 4.42 0.5292 WVFGRD96 88.0 45 65 25 4.42 0.5309 WVFGRD96 90.0 50 60 30 4.42 0.5341 WVFGRD96 92.0 50 60 30 4.43 0.5368 WVFGRD96 94.0 50 60 30 4.43 0.5382 WVFGRD96 96.0 50 60 30 4.43 0.5393 WVFGRD96 98.0 50 60 30 4.43 0.5386 WVFGRD96 100.0 50 60 30 4.44 0.5403 WVFGRD96 102.0 50 60 30 4.44 0.5415 WVFGRD96 104.0 50 60 30 4.44 0.5409 WVFGRD96 106.0 50 60 30 4.45 0.5381 WVFGRD96 108.0 50 60 30 4.45 0.5394 WVFGRD96 110.0 50 60 30 4.45 0.5404 WVFGRD96 112.0 50 60 30 4.46 0.5388 WVFGRD96 114.0 50 60 30 4.46 0.5389 WVFGRD96 116.0 50 60 30 4.46 0.5382 WVFGRD96 118.0 50 60 30 4.47 0.5349 WVFGRD96 120.0 50 60 30 4.47 0.5360 WVFGRD96 122.0 50 55 30 4.47 0.5353 WVFGRD96 124.0 50 55 30 4.47 0.5319 WVFGRD96 126.0 50 55 30 4.47 0.5323 WVFGRD96 128.0 50 55 30 4.48 0.5304 WVFGRD96 130.0 50 55 30 4.48 0.5286 WVFGRD96 132.0 50 55 30 4.48 0.5269 WVFGRD96 134.0 50 55 30 4.48 0.5247 WVFGRD96 136.0 50 55 30 4.49 0.5246 WVFGRD96 138.0 50 55 30 4.49 0.5207 WVFGRD96 140.0 50 55 30 4.49 0.5222 WVFGRD96 142.0 50 55 30 4.50 0.5193 WVFGRD96 144.0 50 55 30 4.50 0.5186 WVFGRD96 146.0 50 55 30 4.50 0.5177 WVFGRD96 148.0 50 55 30 4.50 0.5148
The best solution is
WVFGRD96 102.0 50 60 30 4.44 0.5415
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -50 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00