Location

Location ANSS

The ANSS event ID is tx2024ompo and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/tx2024ompo/executive.

2024/07/25 02:57:43 32.740 -100.732 6.4 4.0 Texas

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2024/07/25 02:57:43:0  32.74 -100.73   6.4 4.0 Texas
 
 Stations used:
   4O.GV02 4O.HP01 4O.HP02 4O.MO01 4O.OE01 TX.APMT TX.DKNS 
   TX.MB03 TX.MB09 TX.MB10 TX.MB12 TX.MB13 TX.MB21 TX.MB22 
   TX.MB23 TX.POST TX.SGCY TX.SN02 TX.SN03 TX.SN04 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.04 n 3 
   lp c 0.20 n 3 
 
 Best Fitting Double Couple
  Mo = 3.76e+21 dyne-cm
  Mw = 3.65 
  Z  = 4 km
  Plane   Strike  Dip  Rake
   NP1      215    50   -85
   NP2       27    40   -96
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.76e+21      5     301
    N   0.00e+00      4      32
    P  -3.76e+21     84     160

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     9.77e+20
       Mxy    -1.65e+21
       Mxz     5.45e+20
       Myy     2.71e+21
       Myz    -4.12e+20
       Mzz    -3.69e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 #####################-              
              ##################-------###           
             ###############------------###          
             #############---------------####        
           T ###########-----------------#####       
         #   #########--------------------#####      
        ############----------------------######     
        ###########-----------------------######     
       ###########------------------------#######    
       ##########----------   -----------########    
       #########----------- P -----------########    
       #########-----------   ----------#########    
        #######------------------------#########     
        #######------------------------#########     
         ######----------------------##########      
          #####---------------------##########       
           ####-------------------###########        
             ##-----------------###########          
              ##--------------############           
                 ---------#############              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.69e+21   5.45e+20   4.12e+20 
  5.45e+20   9.77e+20   1.65e+21 
  4.12e+20   1.65e+21   2.71e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240725025743/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 215
      DIP = 50
     RAKE = -85
       MW = 3.65
       HS = 4.0

The NDK file is 20240725025743.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
TX
 USGS/SLU Moment Tensor Solution
 ENS  2024/07/25 02:57:43:0  32.74 -100.73   6.4 4.0 Texas
 
 Stations used:
   4O.GV02 4O.HP01 4O.HP02 4O.MO01 4O.OE01 TX.APMT TX.DKNS 
   TX.MB03 TX.MB09 TX.MB10 TX.MB12 TX.MB13 TX.MB21 TX.MB22 
   TX.MB23 TX.POST TX.SGCY TX.SN02 TX.SN03 TX.SN04 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.04 n 3 
   lp c 0.20 n 3 
 
 Best Fitting Double Couple
  Mo = 3.76e+21 dyne-cm
  Mw = 3.65 
  Z  = 4 km
  Plane   Strike  Dip  Rake
   NP1      215    50   -85
   NP2       27    40   -96
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.76e+21      5     301
    N   0.00e+00      4      32
    P  -3.76e+21     84     160

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     9.77e+20
       Mxy    -1.65e+21
       Mxz     5.45e+20
       Myy     2.71e+21
       Myz    -4.12e+20
       Mzz    -3.69e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 #####################-              
              ##################-------###           
             ###############------------###          
             #############---------------####        
           T ###########-----------------#####       
         #   #########--------------------#####      
        ############----------------------######     
        ###########-----------------------######     
       ###########------------------------#######    
       ##########----------   -----------########    
       #########----------- P -----------########    
       #########-----------   ----------#########    
        #######------------------------#########     
        #######------------------------#########     
         ######----------------------##########      
          #####---------------------##########       
           ####-------------------###########        
             ##-----------------###########          
              ##--------------############           
                 ---------#############              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.69e+21   5.45e+20   4.12e+20 
  5.45e+20   9.77e+20   1.65e+21 
  4.12e+20   1.65e+21   2.71e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240725025743/index.html
	
Regional Moment Tensor (Mwr)
Moment
3.774e+14 N-m
Magnitude
3.65 Mwr
Depth
3.0 km
Percent DC
80%
Half Duration
-
Catalog
TX
Data Source
TX 1
Contributor
TX 1
Nodal Planes
Plane	Strike	Dip	Rake
NP1	11	42	-108
NP2	215	50	-74
Principal Axes
Axis	Value	Plunge	Azimuth
T	3.960e+14	4	294
N	-0.404e+14	12	25
P	-3.556e+14	77	186

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.04 n 3 
lp c 0.20 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    90    90   -75   3.33 0.3278
WVFGRD96    2.0    90    90   -75   3.55 0.3751
WVFGRD96    3.0    35    35   -85   3.62 0.4668
WVFGRD96    4.0   215    50   -85   3.65 0.4784
WVFGRD96    5.0   215    50   -80   3.66 0.4318
WVFGRD96    6.0   225    55   -65   3.67 0.3745
WVFGRD96    7.0   225    55   -60   3.68 0.3194
WVFGRD96    8.0   225    55   -65   3.76 0.2684
WVFGRD96    9.0   180    55    45   3.75 0.2231
WVFGRD96   10.0   175    55    45   3.76 0.1944
WVFGRD96   11.0   175    55    40   3.77 0.1684
WVFGRD96   12.0   175    55    35   3.78 0.1448
WVFGRD96   13.0   170    45    40   3.79 0.1278
WVFGRD96   14.0   340    30   -20   3.81 0.1161
WVFGRD96   15.0     0    40     5   3.84 0.1084
WVFGRD96   16.0   265    65    35   3.80 0.1120
WVFGRD96   17.0   265    65    40   3.82 0.1173
WVFGRD96   18.0   265    65    40   3.84 0.1227
WVFGRD96   19.0   265    65    45   3.86 0.1271
WVFGRD96   20.0   265    65    55   3.88 0.1354
WVFGRD96   21.0   265    65    60   3.90 0.1437
WVFGRD96   22.0   265    65    60   3.92 0.1530
WVFGRD96   23.0   265    65    65   3.94 0.1630
WVFGRD96   24.0   180    45    55   3.96 0.1745
WVFGRD96   25.0   180    40    55   3.98 0.1880
WVFGRD96   26.0   180    40    55   3.99 0.2010
WVFGRD96   27.0   175    45    45   3.99 0.2130
WVFGRD96   28.0   170    50    40   4.00 0.2226
WVFGRD96   29.0   165    60    40   3.99 0.2336

The best solution is

WVFGRD96    4.0   215    50   -85   3.65 0.4784

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.04 n 3 
lp c 0.20 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Jul 25 06:14:04 CDT 2024