The ANSS event ID is ak0249guafvl and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0249guafvl/executive.
2024/07/24 09:37:54 62.935 -150.495 89.6 3.9 Alaska
USGS/SLU Moment Tensor Solution ENS 2024/07/24 09:37:54:0 62.94 -150.49 89.6 3.9 Alaska Stations used: AK.BPAW AK.GHO AK.J19K AK.J20K AK.KNK AK.L22K AK.MCK AK.MLY AK.NEA2 AK.PAX AK.RC01 AK.RND AK.SAW AK.SCM AK.WRH AT.PMR AT.TTA IM.IL31 Filtering commands used: cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 8.91e+21 dyne-cm Mw = 3.90 Z = 92 km Plane Strike Dip Rake NP1 181 82 -140 NP2 85 50 -10 Principal Axes: Axis Value Plunge Azimuth T 8.91e+21 21 307 N 0.00e+00 49 190 P -8.91e+21 33 51 Moment Tensor: (dyne-cm) Component Value Mxx 3.45e+20 Mxy -6.75e+21 Mxz -7.59e+20 Myy 1.18e+21 Myz -5.60e+21 Mzz -1.52e+21 #######------- ###########----------- #############--------------- ##############---------------- ## ###########------------------ ### T ###########---------- ------ #### ##########----------- P ------- ##################----------- -------- ##################---------------------- ###################----------------------- ###################----------------------# ###################---------------------## -##################-------------------#### --################-----------------##### ----##############---------------####### -------##########-----------########## ----------------#################### ---------------################### -------------################# -------------############### ----------############ ------######## Global CMT Convention Moment Tensor: R T P -1.52e+21 -7.59e+20 5.60e+21 -7.59e+20 3.45e+20 6.75e+21 5.60e+21 6.75e+21 1.18e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240724093754/index.html |
STK = 85 DIP = 50 RAKE = -10 MW = 3.90 HS = 92.0
The NDK file is 20240724093754.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 0 75 -15 2.93 0.2088 WVFGRD96 4.0 185 70 30 3.06 0.2341 WVFGRD96 6.0 185 70 25 3.11 0.2565 WVFGRD96 8.0 185 70 25 3.19 0.2672 WVFGRD96 10.0 120 70 -25 3.21 0.2631 WVFGRD96 12.0 115 70 -20 3.26 0.2670 WVFGRD96 14.0 115 70 -15 3.29 0.2663 WVFGRD96 16.0 115 70 -15 3.32 0.2639 WVFGRD96 18.0 115 70 -10 3.34 0.2635 WVFGRD96 20.0 270 90 -15 3.38 0.2807 WVFGRD96 22.0 270 80 -10 3.42 0.3045 WVFGRD96 24.0 270 85 -10 3.44 0.3300 WVFGRD96 26.0 265 80 -15 3.47 0.3586 WVFGRD96 28.0 85 90 15 3.49 0.3828 WVFGRD96 30.0 265 85 -15 3.52 0.4073 WVFGRD96 32.0 90 90 10 3.53 0.4289 WVFGRD96 34.0 90 90 10 3.55 0.4420 WVFGRD96 36.0 90 90 10 3.57 0.4505 WVFGRD96 38.0 90 90 5 3.60 0.4545 WVFGRD96 40.0 90 90 10 3.65 0.4617 WVFGRD96 42.0 270 90 -10 3.68 0.4570 WVFGRD96 44.0 270 85 -10 3.71 0.4564 WVFGRD96 46.0 90 70 5 3.70 0.4618 WVFGRD96 48.0 90 70 5 3.72 0.4687 WVFGRD96 50.0 85 60 -5 3.74 0.4783 WVFGRD96 52.0 85 55 -10 3.75 0.4908 WVFGRD96 54.0 85 50 -10 3.76 0.5029 WVFGRD96 56.0 85 55 -5 3.77 0.5196 WVFGRD96 58.0 80 50 -10 3.79 0.5369 WVFGRD96 60.0 80 50 -10 3.80 0.5529 WVFGRD96 62.0 80 50 -10 3.81 0.5726 WVFGRD96 64.0 80 45 -15 3.83 0.5896 WVFGRD96 66.0 80 45 -15 3.83 0.6054 WVFGRD96 68.0 80 45 -15 3.84 0.6174 WVFGRD96 70.0 80 45 -15 3.85 0.6311 WVFGRD96 72.0 80 45 -15 3.86 0.6442 WVFGRD96 74.0 80 45 -15 3.86 0.6524 WVFGRD96 76.0 80 45 -15 3.87 0.6628 WVFGRD96 78.0 80 45 -15 3.87 0.6702 WVFGRD96 80.0 80 45 -15 3.88 0.6739 WVFGRD96 82.0 85 50 -10 3.88 0.6810 WVFGRD96 84.0 85 50 -10 3.88 0.6855 WVFGRD96 86.0 85 50 -10 3.89 0.6887 WVFGRD96 88.0 85 50 -10 3.89 0.6920 WVFGRD96 90.0 85 50 -10 3.89 0.6927 WVFGRD96 92.0 85 50 -10 3.90 0.6953 WVFGRD96 94.0 85 50 -10 3.90 0.6929 WVFGRD96 96.0 85 50 -10 3.90 0.6944 WVFGRD96 98.0 90 50 -10 3.91 0.6909 WVFGRD96 100.0 90 50 -10 3.92 0.6934 WVFGRD96 102.0 90 50 -10 3.92 0.6891 WVFGRD96 104.0 90 50 -10 3.92 0.6891 WVFGRD96 106.0 90 50 -10 3.93 0.6844 WVFGRD96 108.0 90 50 -10 3.93 0.6835 WVFGRD96 110.0 90 50 -10 3.93 0.6798 WVFGRD96 112.0 90 50 -5 3.93 0.6776 WVFGRD96 114.0 90 50 -5 3.93 0.6741 WVFGRD96 116.0 90 50 -5 3.93 0.6691 WVFGRD96 118.0 95 50 -5 3.95 0.6661 WVFGRD96 120.0 95 50 -5 3.95 0.6612 WVFGRD96 122.0 95 50 -5 3.95 0.6607 WVFGRD96 124.0 95 50 -5 3.95 0.6553 WVFGRD96 126.0 95 55 0 3.95 0.6532 WVFGRD96 128.0 95 55 0 3.95 0.6511 WVFGRD96 130.0 95 55 0 3.96 0.6466 WVFGRD96 132.0 95 55 0 3.96 0.6453 WVFGRD96 134.0 95 55 0 3.96 0.6414 WVFGRD96 136.0 95 55 0 3.96 0.6393 WVFGRD96 138.0 95 55 0 3.97 0.6364 WVFGRD96 140.0 95 55 0 3.97 0.6329 WVFGRD96 142.0 95 55 0 3.97 0.6316 WVFGRD96 144.0 95 55 0 3.97 0.6279 WVFGRD96 146.0 95 55 0 3.97 0.6232 WVFGRD96 148.0 95 55 0 3.98 0.6156
The best solution is
WVFGRD96 92.0 85 50 -10 3.90 0.6953
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00