The ANSS event ID is tx2024ojad and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/tx2024ojad/executive.
2024/07/23 03:46:25 32.676 -100.670 3.3 4.4 Texas
USGS/SLU Moment Tensor Solution ENS 2024/07/23 03:46:25:0 32.68 -100.67 3.3 4.4 Texas Stations used: 4O.DB04 4O.EE01 4O.HP02 4O.MBBB2 4O.MID02 4O.MID03 TX.APMT TX.DKNS TX.MB03 TX.MB05 TX.MB11 TX.MB15 TX.MB18 TX.MB19 TX.MB21 TX.MB22 TX.MB25 TX.OZNA TX.PB07 TX.PH03 TX.PLPT TX.POST TX.SGCY TX.SMWD TX.SN07 TX.WTFS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.05 n 3 lp c 0.20 n 3 Best Fitting Double Couple Mo = 4.47e+21 dyne-cm Mw = 3.70 Z = 4 km Plane Strike Dip Rake NP1 30 60 -80 NP2 191 31 -107 Principal Axes: Axis Value Plunge Azimuth T 4.47e+21 14 113 N 0.00e+00 9 205 P -4.47e+21 73 325 Moment Tensor: (dyne-cm) Component Value Mxx 3.71e+20 Mxy -1.31e+21 Mxz -1.44e+21 Myy 3.44e+21 Myz 1.71e+21 Mzz -3.81e+21 #######------- #######--------------- #######------------------### ######--------------------#### #######---------------------###### #######----------------------####### #######-----------------------######## #######-------- -------------######### ######--------- P ------------########## #######--------- ------------########### #######-----------------------############ ######-----------------------############# #######---------------------############## ######--------------------######### ## ######-------------------########## T ## #####------------------########### # #####---------------################ #####------------################# ####---------################# ####-----################### ##-################### --############ Global CMT Convention Moment Tensor: R T P -3.81e+21 -1.44e+21 -1.71e+21 -1.44e+21 3.71e+20 1.31e+21 -1.71e+21 1.31e+21 3.44e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240723034625/index.html |
STK = 30 DIP = 60 RAKE = -80 MW = 3.70 HS = 4.0
The NDK file is 20240723034625.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2024/07/23 03:46:25:0 32.68 -100.67 3.3 4.4 Texas Stations used: 4O.DB04 4O.EE01 4O.HP02 4O.MBBB2 4O.MID02 4O.MID03 TX.APMT TX.DKNS TX.MB03 TX.MB05 TX.MB11 TX.MB15 TX.MB18 TX.MB19 TX.MB21 TX.MB22 TX.MB25 TX.OZNA TX.PB07 TX.PH03 TX.PLPT TX.POST TX.SGCY TX.SMWD TX.SN07 TX.WTFS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.05 n 3 lp c 0.20 n 3 Best Fitting Double Couple Mo = 4.47e+21 dyne-cm Mw = 3.70 Z = 4 km Plane Strike Dip Rake NP1 30 60 -80 NP2 191 31 -107 Principal Axes: Axis Value Plunge Azimuth T 4.47e+21 14 113 N 0.00e+00 9 205 P -4.47e+21 73 325 Moment Tensor: (dyne-cm) Component Value Mxx 3.71e+20 Mxy -1.31e+21 Mxz -1.44e+21 Myy 3.44e+21 Myz 1.71e+21 Mzz -3.81e+21 #######------- #######--------------- #######------------------### ######--------------------#### #######---------------------###### #######----------------------####### #######-----------------------######## #######-------- -------------######### ######--------- P ------------########## #######--------- ------------########### #######-----------------------############ ######-----------------------############# #######---------------------############## ######--------------------######### ## ######-------------------########## T ## #####------------------########### # #####---------------################ #####------------################# ####---------################# ####-----################### ##-################### --############ Global CMT Convention Moment Tensor: R T P -3.81e+21 -1.44e+21 -1.71e+21 -1.44e+21 3.71e+20 1.31e+21 -1.71e+21 1.31e+21 3.44e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240723034625/index.html |
Regional Moment Tensor (Mwr) Moment 7.401e+14 N-m Magnitude 3.85 Mwr Depth 4.0 km Percent DC 98% Half Duration - Catalog US Data Source US 2 Contributor US 2 Nodal Planes Plane Strike Dip Rake NP1 236 46 -58 NP2 14 53 -119 Principal Axes Axis Value Plunge Azimuth T 7.359e+14 3 124 N 0.082e+14 23 33 P -7.441e+14 67 222 |
Regional Moment Tensor (Mwr) Moment 4.550e+14 N-m Magnitude 3.71 Mwr Depth 3.0 km Percent DC 93% Half Duration - Catalog TX Data Source TX 1 Contributor TX 1 Nodal Planes Plane Strike Dip Rake NP1 237 47 -48 NP2 5 57 -126 Principal Axes Axis Value Plunge Azimuth T 4.626e+14 5 119 N -0.154e+14 29 26 P -4.471e+14 60 219 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.05 n 3 lp c 0.20 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 45 50 -35 3.32 0.2821 WVFGRD96 2.0 45 45 -40 3.53 0.3413 WVFGRD96 3.0 220 30 -75 3.66 0.4433 WVFGRD96 4.0 30 60 -80 3.70 0.4724 WVFGRD96 5.0 230 45 -45 3.68 0.4551 WVFGRD96 6.0 230 50 -40 3.71 0.4224 WVFGRD96 7.0 235 55 -35 3.74 0.3802 WVFGRD96 8.0 230 45 -40 3.80 0.3361 WVFGRD96 9.0 175 40 60 3.86 0.3063 WVFGRD96 10.0 170 35 55 3.88 0.2736 WVFGRD96 11.0 170 35 50 3.90 0.2404 WVFGRD96 12.0 170 35 50 3.91 0.2111 WVFGRD96 13.0 165 35 40 3.92 0.1841 WVFGRD96 14.0 345 65 40 3.89 0.1676 WVFGRD96 15.0 150 75 -35 3.89 0.1574 WVFGRD96 16.0 0 50 50 3.93 0.1468 WVFGRD96 17.0 165 60 35 3.94 0.1404 WVFGRD96 18.0 165 60 35 3.94 0.1330 WVFGRD96 19.0 15 35 65 3.97 0.1331 WVFGRD96 20.0 15 40 60 3.99 0.1379 WVFGRD96 21.0 15 40 60 4.01 0.1487 WVFGRD96 22.0 15 45 65 4.02 0.1589 WVFGRD96 23.0 195 25 60 4.11 0.1705 WVFGRD96 24.0 40 65 -75 4.09 0.1820 WVFGRD96 25.0 220 40 -75 4.05 0.1937 WVFGRD96 26.0 225 45 -70 4.05 0.2058 WVFGRD96 27.0 225 45 -70 4.06 0.2149 WVFGRD96 28.0 225 50 -70 4.05 0.2198 WVFGRD96 29.0 225 50 -70 4.06 0.2218
The best solution is
WVFGRD96 4.0 30 60 -80 3.70 0.4724
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.05 n 3 lp c 0.20 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00