Location

Location ANSS

The ANSS event ID is tx2024oixr and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/tx2024oixr/executive.

2024/07/23 02:31:04 31.676 -104.407 5.6 4.2 Texas

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2024/07/23 02:31:04:0  31.68 -104.41   5.6 4.2 Texas
 
 Stations used:
   4O.BP01 4O.CV01 4O.DB02 4O.DB03 4O.DB04 4O.EE01 4O.LWM1 
   4O.LWM2 4O.MBBB2 4O.MID02 4O.MID03 4O.SA04 4O.SM02 4O.VW01 
   4O.WB02 4O.WB03 4O.WB05 4O.WB06 4O.WB08 4O.WB09 4O.WB10 
   4T.NM01 TX.ALPN TX.MB06 TX.MB07 TX.MB08 TX.MB10 TX.MB11 
   TX.MB15 TX.MB18 TX.MB25 TX.ODSA TX.PB01 TX.PB03 TX.PB04 
   TX.PB06 TX.PB07 TX.PB09 TX.PB10 TX.PB11 TX.PB12 TX.PB13 
   TX.PB14 TX.PB16 TX.PB17 TX.PB18 TX.PB19 TX.PB21 TX.PB22 
   TX.PB23 TX.PB24 TX.PB25 TX.PB26 TX.PB33 TX.PB34 TX.PB39 
   TX.PB40 TX.PB43 TX.PB44 TX.PB46 TX.PB47 TX.PB51 TX.PB54 
   TX.PCOS TX.PECS TX.VHRN 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 1.17e+22 dyne-cm
  Mw = 3.98 
  Z  = 6 km
  Plane   Strike  Dip  Rake
   NP1      287    50   -86
   NP2      100    40   -95
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.17e+22      5      14
    N   0.00e+00      3     104
    P  -1.17e+22     84     226

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.10e+22
       Mxy     2.59e+21
       Mxz     1.87e+21
       Myy     5.73e+20
       Myz     1.13e+21
       Mzz    -1.15e+22
                                                     
                                                     
                                                     
                                                     
                     ########## T #                  
                 ##############   #####              
              ############################           
             ##############################          
           ##################################        
          ######-------------#################       
         ###----------------------#############      
        #-----------------------------##########     
        ---------------------------------#######     
       #-----------------------------------######    
       #------------------------------------#####    
       ##---------------   -------------------###    
       ###-------------- P --------------------##    
        ####------------   ---------------------     
        ######--------------------------------##     
         #######----------------------------###      
          #########----------------------#####       
           ##############-----------#########        
             ##############################          
              ############################           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.15e+22   1.87e+21  -1.13e+21 
  1.87e+21   1.10e+22  -2.59e+21 
 -1.13e+21  -2.59e+21   5.73e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240723023104/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 100
      DIP = 40
     RAKE = -95
       MW = 3.98
       HS = 6.0

The NDK file is 20240723023104.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
TX
 USGS/SLU Moment Tensor Solution
 ENS  2024/07/23 02:31:04:0  31.68 -104.41   5.6 4.2 Texas
 
 Stations used:
   4O.BP01 4O.CV01 4O.DB02 4O.DB03 4O.DB04 4O.EE01 4O.LWM1 
   4O.LWM2 4O.MBBB2 4O.MID02 4O.MID03 4O.SA04 4O.SM02 4O.VW01 
   4O.WB02 4O.WB03 4O.WB05 4O.WB06 4O.WB08 4O.WB09 4O.WB10 
   4T.NM01 TX.ALPN TX.MB06 TX.MB07 TX.MB08 TX.MB10 TX.MB11 
   TX.MB15 TX.MB18 TX.MB25 TX.ODSA TX.PB01 TX.PB03 TX.PB04 
   TX.PB06 TX.PB07 TX.PB09 TX.PB10 TX.PB11 TX.PB12 TX.PB13 
   TX.PB14 TX.PB16 TX.PB17 TX.PB18 TX.PB19 TX.PB21 TX.PB22 
   TX.PB23 TX.PB24 TX.PB25 TX.PB26 TX.PB33 TX.PB34 TX.PB39 
   TX.PB40 TX.PB43 TX.PB44 TX.PB46 TX.PB47 TX.PB51 TX.PB54 
   TX.PCOS TX.PECS TX.VHRN 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 1.17e+22 dyne-cm
  Mw = 3.98 
  Z  = 6 km
  Plane   Strike  Dip  Rake
   NP1      287    50   -86
   NP2      100    40   -95
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.17e+22      5      14
    N   0.00e+00      3     104
    P  -1.17e+22     84     226

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.10e+22
       Mxy     2.59e+21
       Mxz     1.87e+21
       Myy     5.73e+20
       Myz     1.13e+21
       Mzz    -1.15e+22
                                                     
                                                     
                                                     
                                                     
                     ########## T #                  
                 ##############   #####              
              ############################           
             ##############################          
           ##################################        
          ######-------------#################       
         ###----------------------#############      
        #-----------------------------##########     
        ---------------------------------#######     
       #-----------------------------------######    
       #------------------------------------#####    
       ##---------------   -------------------###    
       ###-------------- P --------------------##    
        ####------------   ---------------------     
        ######--------------------------------##     
         #######----------------------------###      
          #########----------------------#####       
           ##############-----------#########        
             ##############################          
              ############################           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.15e+22   1.87e+21  -1.13e+21 
  1.87e+21   1.10e+22  -2.59e+21 
 -1.13e+21  -2.59e+21   5.73e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240723023104/index.html
	

Regional Moment Tensor (Mwr)
Moment
1.023e+15 N-m
Magnitude
3.94 Mwr
Depth
5.0 km
Percent DC
54%
Half Duration
-
Catalog
TX
Data Source
TX 1
Contributor
TX 1
Nodal Planes
Plane	Strike	Dip	Rake
NP1	101	46	-98
NP2	293	44	-82
Principal Axes
Axis	Value	Plunge	Azimuth
T	1.128e+15	1	197
N	-0.258e+15	6	107
P	-0.870e+15	84	297

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   150    85   -10   3.54 0.2192
WVFGRD96    2.0   325    75   -55   3.79 0.2694
WVFGRD96    3.0   320    75   -65   3.88 0.3684
WVFGRD96    4.0   305    55   -65   3.92 0.4352
WVFGRD96    5.0   290    50   -80   3.97 0.4824
WVFGRD96    6.0   100    40   -95   3.98 0.4962
WVFGRD96    7.0   105    40   -85   3.99 0.4876
WVFGRD96    8.0   105    40   -85   4.06 0.4940
WVFGRD96    9.0   105    40   -85   4.05 0.4686
WVFGRD96   10.0   110    40   -80   4.05 0.4369
WVFGRD96   11.0   340    55    40   3.98 0.4134
WVFGRD96   12.0   335    60    35   3.98 0.3936
WVFGRD96   13.0   335    60    30   3.98 0.3740
WVFGRD96   14.0   330    70    25   3.99 0.3556
WVFGRD96   15.0   330    70    25   3.99 0.3401
WVFGRD96   16.0   330    75    20   3.99 0.3259
WVFGRD96   17.0   330    75    20   4.00 0.3143
WVFGRD96   18.0   330    75    20   4.00 0.3032
WVFGRD96   19.0   330    75    20   4.00 0.2929
WVFGRD96   20.0   330    75    20   4.01 0.2838
WVFGRD96   21.0   330    80    20   4.02 0.2758
WVFGRD96   22.0   330    80    20   4.02 0.2684
WVFGRD96   23.0   145    70   -25   4.06 0.2660
WVFGRD96   24.0   145    70   -25   4.06 0.2626
WVFGRD96   25.0   145    75   -30   4.07 0.2592
WVFGRD96   26.0   145    75   -30   4.07 0.2562
WVFGRD96   27.0   145    75   -30   4.08 0.2534
WVFGRD96   28.0   145    75   -30   4.09 0.2507
WVFGRD96   29.0   145    80   -30   4.09 0.2476

The best solution is

WVFGRD96    6.0   100    40   -95   3.98 0.4962

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Tue Jul 23 10:47:56 CDT 2024