The ANSS event ID is ak0247zzhfxj and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0247zzhfxj/executive.
2024/06/22 13:39:28 63.131 -150.424 107.4 4.0 Alaska
USGS/SLU Moment Tensor Solution ENS 2024/06/22 13:39:28:0 63.13 -150.42 107.4 4.0 Alaska Stations used: AK.BPAW AK.CAST AK.CCB AK.CUT AK.DOT AK.GHO AK.H21K AK.H24K AK.HDA AK.I23K AK.J19K AK.J20K AK.K20K AK.K24K AK.KNK AK.L19K AK.L20K AK.L22K AK.MCK AK.MLY AK.PAX AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.WRH AT.PMR AT.TTA IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.45e+22 dyne-cm Mw = 4.04 Z = 110 km Plane Strike Dip Rake NP1 326 64 134 NP2 80 50 35 Principal Axes: Axis Value Plunge Azimuth T 1.45e+22 50 286 N 0.00e+00 39 123 P -1.45e+22 8 26 Moment Tensor: (dyne-cm) Component Value Mxx -1.10e+22 Mxy -7.13e+21 Mxz 9.62e+19 Myy 2.86e+21 Myz -7.75e+21 Mzz 8.16e+21 -------------- ------------------ P - ######--------------- ---- ###########------------------- ###############------------------- ##################------------------ #####################----------------- #######################----------------- ######### #############--------------- ########## T ##############--------------# ########## ###############------------## #############################----------### ##############################-------##### -#############################----###### ---##################################### -----#####################----######## -----------#######------------###### -----------------------------##### ---------------------------### --------------------------## ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 8.16e+21 9.62e+19 7.75e+21 9.62e+19 -1.10e+22 7.13e+21 7.75e+21 7.13e+21 2.86e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240622133928/index.html |
STK = 80 DIP = 50 RAKE = 35 MW = 4.04 HS = 110.0
The NDK file is 20240622133928.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 120 40 -80 3.21 0.1863 WVFGRD96 4.0 340 45 -10 3.22 0.1844 WVFGRD96 6.0 165 60 25 3.27 0.2097 WVFGRD96 8.0 165 60 25 3.35 0.2310 WVFGRD96 10.0 165 60 25 3.40 0.2441 WVFGRD96 12.0 165 60 25 3.43 0.2490 WVFGRD96 14.0 155 60 -20 3.46 0.2501 WVFGRD96 16.0 155 60 -20 3.49 0.2502 WVFGRD96 18.0 155 60 -20 3.51 0.2456 WVFGRD96 20.0 155 55 -20 3.53 0.2387 WVFGRD96 22.0 260 60 30 3.56 0.2324 WVFGRD96 24.0 260 65 30 3.58 0.2400 WVFGRD96 26.0 80 70 35 3.61 0.2508 WVFGRD96 28.0 250 80 -30 3.64 0.2628 WVFGRD96 30.0 250 85 -30 3.66 0.2809 WVFGRD96 32.0 255 90 -30 3.68 0.2976 WVFGRD96 34.0 75 85 35 3.70 0.3129 WVFGRD96 36.0 75 85 30 3.71 0.3224 WVFGRD96 38.0 75 80 30 3.74 0.3289 WVFGRD96 40.0 75 80 40 3.81 0.3365 WVFGRD96 42.0 75 75 40 3.84 0.3431 WVFGRD96 44.0 75 75 40 3.86 0.3506 WVFGRD96 46.0 75 75 40 3.87 0.3589 WVFGRD96 48.0 80 70 45 3.89 0.3681 WVFGRD96 50.0 80 70 45 3.90 0.3781 WVFGRD96 52.0 75 70 40 3.91 0.3853 WVFGRD96 54.0 75 65 40 3.92 0.3941 WVFGRD96 56.0 75 65 40 3.93 0.4072 WVFGRD96 58.0 80 60 45 3.94 0.4197 WVFGRD96 60.0 80 60 45 3.95 0.4325 WVFGRD96 62.0 75 60 40 3.96 0.4463 WVFGRD96 64.0 75 60 40 3.96 0.4591 WVFGRD96 66.0 75 60 40 3.97 0.4717 WVFGRD96 68.0 75 55 40 3.97 0.4854 WVFGRD96 70.0 75 55 35 3.98 0.4983 WVFGRD96 72.0 75 55 35 3.98 0.5101 WVFGRD96 74.0 75 55 35 3.99 0.5213 WVFGRD96 76.0 75 55 35 3.99 0.5327 WVFGRD96 78.0 75 55 35 3.99 0.5430 WVFGRD96 80.0 75 50 35 4.00 0.5523 WVFGRD96 82.0 75 50 35 4.00 0.5603 WVFGRD96 84.0 75 55 35 4.00 0.5678 WVFGRD96 86.0 75 50 35 4.01 0.5746 WVFGRD96 88.0 75 50 35 4.01 0.5799 WVFGRD96 90.0 75 50 35 4.02 0.5863 WVFGRD96 92.0 75 50 35 4.02 0.5922 WVFGRD96 94.0 75 50 35 4.02 0.5962 WVFGRD96 96.0 75 50 35 4.02 0.5996 WVFGRD96 98.0 75 50 35 4.03 0.6022 WVFGRD96 100.0 75 50 35 4.03 0.6053 WVFGRD96 102.0 75 50 35 4.03 0.6079 WVFGRD96 104.0 75 50 35 4.04 0.6089 WVFGRD96 106.0 80 50 35 4.04 0.6094 WVFGRD96 108.0 80 50 35 4.04 0.6113 WVFGRD96 110.0 80 50 35 4.04 0.6124 WVFGRD96 112.0 80 50 35 4.04 0.6119 WVFGRD96 114.0 80 50 35 4.05 0.6113 WVFGRD96 116.0 80 50 35 4.05 0.6104 WVFGRD96 118.0 80 50 35 4.05 0.6086 WVFGRD96 120.0 80 50 35 4.05 0.6085 WVFGRD96 122.0 80 50 35 4.06 0.6065 WVFGRD96 124.0 80 50 35 4.06 0.6034 WVFGRD96 126.0 80 50 35 4.06 0.6029 WVFGRD96 128.0 80 50 35 4.06 0.5998 WVFGRD96 130.0 80 50 35 4.07 0.5981 WVFGRD96 132.0 80 50 35 4.07 0.5957 WVFGRD96 134.0 80 50 35 4.07 0.5939 WVFGRD96 136.0 80 50 35 4.07 0.5908 WVFGRD96 138.0 80 50 35 4.07 0.5883 WVFGRD96 140.0 80 50 35 4.08 0.5866 WVFGRD96 142.0 80 50 35 4.08 0.5829 WVFGRD96 144.0 80 50 35 4.08 0.5817 WVFGRD96 146.0 80 50 35 4.08 0.5790 WVFGRD96 148.0 80 50 35 4.09 0.5767
The best solution is
WVFGRD96 110.0 80 50 35 4.04 0.6124
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00