The ANSS event ID is nm60582051 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nm60582051/executive.
2024/05/16 08:19:34 36.201 -89.479 7.3 3.8 Tennessee
USGS/SLU Moment Tensor Solution
ENS 2024/05/16 08:19:34:0 36.20 -89.48 7.3 3.8 Tennessee
Stations used:
AG.FCAR AG.HHAR AG.LCAR AG.U40A ET.FPAL ET.SWET GS.DEC04
GS.DEC06 GS.DEC08 GS.DEC09 IU.WCI IU.WVT N4.P40B N4.P43A
N4.P46A N4.Q44B N4.S39B N4.S44A N4.T45B N4.T47A N4.T50A
N4.U38B N4.U49A N4.V48A N4.W50A N4.X48A N4.Y45B N4.Y49A
N4.Z47B NM.BLO NM.CGM3 NM.CLTN NM.FFIL NM.FVM NM.HALT
NM.HENM NM.HICK NM.LPAR NM.MGMO NM.MPH NM.OLIL NM.PARM
NM.PBMO NM.PEBM NM.PENM NM.PWLA NM.SLM NM.UALR NM.USIN
NM.UTMT US.LRAL
Filtering commands used:
cut o DIST/3.3 -50 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 5.89e+21 dyne-cm
Mw = 3.78
Z = 3 km
Plane Strike Dip Rake
NP1 105 55 45
NP2 345 55 135
Principal Axes:
Axis Value Plunge Azimuth
T 5.89e+21 55 315
N 0.00e+00 35 135
P -5.89e+21 0 225
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.95e+21
Mxy -3.93e+21
Mxz 1.99e+21
Myy -1.97e+21
Myz -1.94e+21
Mzz 3.91e+21
###-----------
##########------------
###############-------------
##################------------
#####################-------------
#######################-------------
########### ###########-------------
############ T ############-------------
############ #############------------
--###########################-------------
---###########################------------
-----#########################------------
-------########################-----------
---------#####################----------
------------##################---------#
----------------#############-----####
---------------------------#########
--------------------------########
---------------------######
P --------------------######
------------------####
-------------#
Global CMT Convention Moment Tensor:
R T P
3.91e+21 1.99e+21 1.94e+21
1.99e+21 -1.95e+21 3.93e+21
1.94e+21 3.93e+21 -1.97e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240516081934/index.html
|
STK = 105
DIP = 55
RAKE = 45
MW = 3.78
HS = 3.0
The NDK file is 20240516081934.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2024/05/16 08:19:34:0 36.20 -89.48 7.3 3.8 Tennessee
Stations used:
AG.FCAR AG.HHAR AG.LCAR AG.U40A ET.FPAL ET.SWET GS.DEC04
GS.DEC06 GS.DEC08 GS.DEC09 IU.WCI IU.WVT N4.P40B N4.P43A
N4.P46A N4.Q44B N4.S39B N4.S44A N4.T45B N4.T47A N4.T50A
N4.U38B N4.U49A N4.V48A N4.W50A N4.X48A N4.Y45B N4.Y49A
N4.Z47B NM.BLO NM.CGM3 NM.CLTN NM.FFIL NM.FVM NM.HALT
NM.HENM NM.HICK NM.LPAR NM.MGMO NM.MPH NM.OLIL NM.PARM
NM.PBMO NM.PEBM NM.PENM NM.PWLA NM.SLM NM.UALR NM.USIN
NM.UTMT US.LRAL
Filtering commands used:
cut o DIST/3.3 -50 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 5.89e+21 dyne-cm
Mw = 3.78
Z = 3 km
Plane Strike Dip Rake
NP1 105 55 45
NP2 345 55 135
Principal Axes:
Axis Value Plunge Azimuth
T 5.89e+21 55 315
N 0.00e+00 35 135
P -5.89e+21 0 225
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.95e+21
Mxy -3.93e+21
Mxz 1.99e+21
Myy -1.97e+21
Myz -1.94e+21
Mzz 3.91e+21
###-----------
##########------------
###############-------------
##################------------
#####################-------------
#######################-------------
########### ###########-------------
############ T ############-------------
############ #############------------
--###########################-------------
---###########################------------
-----#########################------------
-------########################-----------
---------#####################----------
------------##################---------#
----------------#############-----####
---------------------------#########
--------------------------########
---------------------######
P --------------------######
------------------####
-------------#
Global CMT Convention Moment Tensor:
R T P
3.91e+21 1.99e+21 1.94e+21
1.99e+21 -1.95e+21 3.93e+21
1.94e+21 3.93e+21 -1.97e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240516081934/index.html
|
Regional Moment Tensor (Mwr) Moment 6.986e+14 N-m Magnitude 3.83 Mwr Depth 3.0 km Percent DC 88% Half Duration - Catalog US Data Source US 2 Contributor US 2 Nodal Planes Plane Strike Dip Rake NP1 333 54 111 NP2 120 41 64 Principal Axes Axis Value Plunge Azimuth T 6.755e+14 72 298 N 0.442e+14 17 140 P -7.196e+14 7 49 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -50 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 270 50 5 3.70 0.4088
WVFGRD96 2.0 100 60 35 3.74 0.4457
WVFGRD96 3.0 105 55 45 3.78 0.4621
WVFGRD96 4.0 95 65 30 3.75 0.4555
WVFGRD96 5.0 270 70 10 3.74 0.4487
WVFGRD96 6.0 270 70 10 3.74 0.4431
WVFGRD96 7.0 270 70 10 3.75 0.4381
WVFGRD96 8.0 265 70 -15 3.76 0.4377
WVFGRD96 9.0 265 70 -15 3.77 0.4368
WVFGRD96 10.0 265 70 -15 3.78 0.4364
WVFGRD96 11.0 265 70 -15 3.79 0.4359
WVFGRD96 12.0 265 70 -15 3.80 0.4344
WVFGRD96 13.0 265 70 -15 3.81 0.4311
WVFGRD96 14.0 265 70 -10 3.81 0.4279
WVFGRD96 15.0 265 70 -10 3.82 0.4245
WVFGRD96 16.0 265 70 -10 3.83 0.4195
WVFGRD96 17.0 265 70 -10 3.84 0.4147
WVFGRD96 18.0 270 75 -10 3.85 0.4098
WVFGRD96 19.0 270 75 -10 3.86 0.4038
WVFGRD96 20.0 270 70 15 3.87 0.3979
WVFGRD96 21.0 270 70 15 3.87 0.3927
WVFGRD96 22.0 270 65 15 3.88 0.3878
WVFGRD96 23.0 270 65 15 3.89 0.3832
WVFGRD96 24.0 270 65 15 3.89 0.3799
WVFGRD96 25.0 270 65 15 3.90 0.3761
WVFGRD96 26.0 270 65 15 3.91 0.3732
WVFGRD96 27.0 270 65 15 3.91 0.3705
WVFGRD96 28.0 270 65 15 3.92 0.3686
WVFGRD96 29.0 270 65 15 3.92 0.3671
The best solution is
WVFGRD96 3.0 105 55 45 3.78 0.4621
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -50 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00