Location

Location ANSS

The ANSS event ID is nm60582051 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nm60582051/executive.

2024/05/16 08:19:34 36.201 -89.479 7.3 3.8 Tennessee

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2024/05/16 08:19:34:0  36.20  -89.48   7.3 3.8 Tennessee
 
 Stations used:
   AG.FCAR AG.HHAR AG.LCAR AG.U40A ET.FPAL ET.SWET GS.DEC04 
   GS.DEC06 GS.DEC08 GS.DEC09 IU.WCI IU.WVT N4.P40B N4.P43A 
   N4.P46A N4.Q44B N4.S39B N4.S44A N4.T45B N4.T47A N4.T50A 
   N4.U38B N4.U49A N4.V48A N4.W50A N4.X48A N4.Y45B N4.Y49A 
   N4.Z47B NM.BLO NM.CGM3 NM.CLTN NM.FFIL NM.FVM NM.HALT 
   NM.HENM NM.HICK NM.LPAR NM.MGMO NM.MPH NM.OLIL NM.PARM 
   NM.PBMO NM.PEBM NM.PENM NM.PWLA NM.SLM NM.UALR NM.USIN 
   NM.UTMT US.LRAL 
 
 Filtering commands used:
   cut o DIST/3.3 -50 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 5.89e+21 dyne-cm
  Mw = 3.78 
  Z  = 3 km
  Plane   Strike  Dip  Rake
   NP1      105    55    45
   NP2      345    55   135
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.89e+21     55     315
    N   0.00e+00     35     135
    P  -5.89e+21      0     225

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.95e+21
       Mxy    -3.93e+21
       Mxz     1.99e+21
       Myy    -1.97e+21
       Myz    -1.94e+21
       Mzz     3.91e+21
                                                     
                                                     
                                                     
                                                     
                     ###-----------                  
                 ##########------------              
              ###############-------------           
             ##################------------          
           #####################-------------        
          #######################-------------       
         ###########   ###########-------------      
        ############ T ############-------------     
        ############   #############------------     
       --###########################-------------    
       ---###########################------------    
       -----#########################------------    
       -------########################-----------    
        ---------#####################----------     
        ------------##################---------#     
         ----------------#############-----####      
          ---------------------------#########       
           --------------------------########        
                ---------------------######          
              P --------------------######           
                 ------------------####              
                     -------------#                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.91e+21   1.99e+21   1.94e+21 
  1.99e+21  -1.95e+21   3.93e+21 
  1.94e+21   3.93e+21  -1.97e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240516081934/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 105
      DIP = 55
     RAKE = 45
       MW = 3.78
       HS = 3.0

The NDK file is 20240516081934.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2024/05/16 08:19:34:0  36.20  -89.48   7.3 3.8 Tennessee
 
 Stations used:
   AG.FCAR AG.HHAR AG.LCAR AG.U40A ET.FPAL ET.SWET GS.DEC04 
   GS.DEC06 GS.DEC08 GS.DEC09 IU.WCI IU.WVT N4.P40B N4.P43A 
   N4.P46A N4.Q44B N4.S39B N4.S44A N4.T45B N4.T47A N4.T50A 
   N4.U38B N4.U49A N4.V48A N4.W50A N4.X48A N4.Y45B N4.Y49A 
   N4.Z47B NM.BLO NM.CGM3 NM.CLTN NM.FFIL NM.FVM NM.HALT 
   NM.HENM NM.HICK NM.LPAR NM.MGMO NM.MPH NM.OLIL NM.PARM 
   NM.PBMO NM.PEBM NM.PENM NM.PWLA NM.SLM NM.UALR NM.USIN 
   NM.UTMT US.LRAL 
 
 Filtering commands used:
   cut o DIST/3.3 -50 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 5.89e+21 dyne-cm
  Mw = 3.78 
  Z  = 3 km
  Plane   Strike  Dip  Rake
   NP1      105    55    45
   NP2      345    55   135
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.89e+21     55     315
    N   0.00e+00     35     135
    P  -5.89e+21      0     225

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.95e+21
       Mxy    -3.93e+21
       Mxz     1.99e+21
       Myy    -1.97e+21
       Myz    -1.94e+21
       Mzz     3.91e+21
                                                     
                                                     
                                                     
                                                     
                     ###-----------                  
                 ##########------------              
              ###############-------------           
             ##################------------          
           #####################-------------        
          #######################-------------       
         ###########   ###########-------------      
        ############ T ############-------------     
        ############   #############------------     
       --###########################-------------    
       ---###########################------------    
       -----#########################------------    
       -------########################-----------    
        ---------#####################----------     
        ------------##################---------#     
         ----------------#############-----####      
          ---------------------------#########       
           --------------------------########        
                ---------------------######          
              P --------------------######           
                 ------------------####              
                     -------------#                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.91e+21   1.99e+21   1.94e+21 
  1.99e+21  -1.95e+21   3.93e+21 
  1.94e+21   3.93e+21  -1.97e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240516081934/index.html
	
Regional Moment Tensor (Mwr)
Moment
6.986e+14 N-m
Magnitude
3.83 Mwr
Depth
3.0 km
Percent DC
88%
Half Duration
-
Catalog
US
Data Source
US 2
Contributor
US 2
Nodal Planes
Plane	Strike	Dip	Rake
NP1	333	54	111
NP2	120	41	64
Principal Axes
Axis	Value	Plunge	Azimuth
T	6.755e+14	72	298
N	0.442e+14	17	140
P	-7.196e+14	7	49

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -50 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   270    50     5   3.70 0.4088
WVFGRD96    2.0   100    60    35   3.74 0.4457
WVFGRD96    3.0   105    55    45   3.78 0.4621
WVFGRD96    4.0    95    65    30   3.75 0.4555
WVFGRD96    5.0   270    70    10   3.74 0.4487
WVFGRD96    6.0   270    70    10   3.74 0.4431
WVFGRD96    7.0   270    70    10   3.75 0.4381
WVFGRD96    8.0   265    70   -15   3.76 0.4377
WVFGRD96    9.0   265    70   -15   3.77 0.4368
WVFGRD96   10.0   265    70   -15   3.78 0.4364
WVFGRD96   11.0   265    70   -15   3.79 0.4359
WVFGRD96   12.0   265    70   -15   3.80 0.4344
WVFGRD96   13.0   265    70   -15   3.81 0.4311
WVFGRD96   14.0   265    70   -10   3.81 0.4279
WVFGRD96   15.0   265    70   -10   3.82 0.4245
WVFGRD96   16.0   265    70   -10   3.83 0.4195
WVFGRD96   17.0   265    70   -10   3.84 0.4147
WVFGRD96   18.0   270    75   -10   3.85 0.4098
WVFGRD96   19.0   270    75   -10   3.86 0.4038
WVFGRD96   20.0   270    70    15   3.87 0.3979
WVFGRD96   21.0   270    70    15   3.87 0.3927
WVFGRD96   22.0   270    65    15   3.88 0.3878
WVFGRD96   23.0   270    65    15   3.89 0.3832
WVFGRD96   24.0   270    65    15   3.89 0.3799
WVFGRD96   25.0   270    65    15   3.90 0.3761
WVFGRD96   26.0   270    65    15   3.91 0.3732
WVFGRD96   27.0   270    65    15   3.91 0.3705
WVFGRD96   28.0   270    65    15   3.92 0.3686
WVFGRD96   29.0   270    65    15   3.92 0.3671

The best solution is

WVFGRD96    3.0   105    55    45   3.78 0.4621

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -50 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
CUS Model with Q from simple gamma values
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
  H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC)   QP   QS  ETAP  ETAS  FREFP  FREFS
  1.0000  5.0000  2.8900  2.5000 0.172E-02 0.387E-02 0.00  0.00  1.00  1.00 
  9.0000  6.1000  3.5200  2.7300 0.160E-02 0.363E-02 0.00  0.00  1.00  1.00 
 10.0000  6.4000  3.7000  2.8200 0.149E-02 0.336E-02 0.00  0.00  1.00  1.00 
 20.0000  6.7000  3.8700  2.9020 0.000E-04 0.000E-04 0.00  0.00  1.00  1.00 
  0.0000  8.1500  4.7000  3.3640 0.194E-02 0.431E-02 0.00  0.00  1.00  1.00 
Last Changed Thu May 16 08:58:46 CDT 2024