The ANSS event ID is ak02462bum3w and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak02462bum3w/executive.
2024/05/11 01:53:05 59.828 -152.851 94.6 4.5 Alaska
USGS/SLU Moment Tensor Solution ENS 2024/05/11 01:53:05:0 59.83 -152.85 94.6 4.5 Alaska Stations used: AK.BRLK AK.CAPN AK.CUT AK.DIV AK.FID AK.FIRE AK.L19K AK.L20K AK.L22K AK.N15K AK.N18K AK.O18K AK.O19K AK.P16K AK.P17K AK.RC01 AK.SLK AK.SWD AT.TTA AV.STLK II.KDAK Filtering commands used: cut o DIST/3.6 -40 o DIST/3.6 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.32e+23 dyne-cm Mw = 4.68 Z = 104 km Plane Strike Dip Rake NP1 221 64 134 NP2 335 50 35 Principal Axes: Axis Value Plunge Azimuth T 1.32e+23 50 181 N 0.00e+00 39 18 P -1.32e+23 8 281 Moment Tensor: (dyne-cm) Component Value Mxx 5.01e+22 Mxy 2.47e+22 Mxz -6.85e+22 Myy -1.25e+23 Myz 1.74e+22 Mzz 7.45e+22 ############## -------############### --------------############## -----------------#####-------- ---------------------------------- -------------------####------------- ------------------########------------ --------------###########------------ P ------------##############----------- - -----------################----------- -------------##################----------- ------------####################---------- -----------#####################---------- ---------#######################-------- --------########################-------- -------########## ###########------- -----########### T ###########------ ----########### ###########----- -#########################---- ########################---- #####################- ############## Global CMT Convention Moment Tensor: R T P 7.45e+22 -6.85e+22 -1.74e+22 -6.85e+22 5.01e+22 -2.47e+22 -1.74e+22 -2.47e+22 -1.25e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240511015305/index.html |
STK = 335 DIP = 50 RAKE = 35 MW = 4.68 HS = 104.0
The NDK file is 20240511015305.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.6 -40 o DIST/3.6 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 20 45 -70 3.90 0.2774 WVFGRD96 4.0 45 90 35 3.89 0.2376 WVFGRD96 6.0 230 75 40 3.96 0.2801 WVFGRD96 8.0 230 75 40 4.05 0.3123 WVFGRD96 10.0 230 75 40 4.09 0.3304 WVFGRD96 12.0 225 75 40 4.12 0.3330 WVFGRD96 14.0 225 75 40 4.14 0.3253 WVFGRD96 16.0 310 40 10 4.15 0.3140 WVFGRD96 18.0 315 40 15 4.18 0.3117 WVFGRD96 20.0 320 35 20 4.20 0.3064 WVFGRD96 22.0 135 50 15 4.24 0.3081 WVFGRD96 24.0 135 50 15 4.26 0.3096 WVFGRD96 26.0 145 60 20 4.29 0.3124 WVFGRD96 28.0 145 55 20 4.31 0.3135 WVFGRD96 30.0 145 60 20 4.33 0.3128 WVFGRD96 32.0 145 65 20 4.34 0.3141 WVFGRD96 34.0 145 65 20 4.36 0.3191 WVFGRD96 36.0 145 65 20 4.38 0.3195 WVFGRD96 38.0 145 70 20 4.41 0.3187 WVFGRD96 40.0 145 55 20 4.48 0.3345 WVFGRD96 42.0 145 50 15 4.51 0.3366 WVFGRD96 44.0 145 50 15 4.54 0.3395 WVFGRD96 46.0 140 65 -20 4.57 0.3403 WVFGRD96 48.0 140 65 -20 4.58 0.3456 WVFGRD96 50.0 140 70 -25 4.60 0.3500 WVFGRD96 52.0 140 70 -25 4.61 0.3535 WVFGRD96 54.0 140 70 -30 4.62 0.3589 WVFGRD96 56.0 140 70 -30 4.63 0.3676 WVFGRD96 58.0 320 55 -15 4.65 0.3778 WVFGRD96 60.0 330 60 20 4.62 0.3934 WVFGRD96 62.0 330 60 25 4.62 0.4122 WVFGRD96 64.0 335 55 30 4.63 0.4320 WVFGRD96 66.0 335 55 30 4.63 0.4500 WVFGRD96 68.0 335 55 30 4.64 0.4669 WVFGRD96 70.0 335 55 30 4.64 0.4832 WVFGRD96 72.0 335 55 30 4.65 0.4977 WVFGRD96 74.0 335 55 30 4.65 0.5135 WVFGRD96 76.0 335 55 35 4.65 0.5260 WVFGRD96 78.0 335 55 35 4.65 0.5392 WVFGRD96 80.0 335 55 35 4.65 0.5506 WVFGRD96 82.0 335 55 35 4.66 0.5602 WVFGRD96 84.0 335 50 35 4.66 0.5708 WVFGRD96 86.0 335 50 35 4.66 0.5797 WVFGRD96 88.0 335 50 35 4.67 0.5873 WVFGRD96 90.0 335 50 35 4.67 0.5945 WVFGRD96 92.0 335 50 35 4.67 0.6001 WVFGRD96 94.0 335 50 35 4.67 0.6041 WVFGRD96 96.0 335 50 35 4.67 0.6074 WVFGRD96 98.0 335 50 35 4.67 0.6108 WVFGRD96 100.0 335 50 35 4.68 0.6144 WVFGRD96 102.0 335 50 35 4.68 0.6164 WVFGRD96 104.0 335 50 35 4.68 0.6171 WVFGRD96 106.0 340 45 40 4.68 0.6168 WVFGRD96 108.0 340 45 40 4.68 0.6160 WVFGRD96 110.0 340 45 40 4.68 0.6162 WVFGRD96 112.0 340 45 40 4.68 0.6160 WVFGRD96 114.0 340 45 40 4.69 0.6144 WVFGRD96 116.0 340 45 40 4.69 0.6121 WVFGRD96 118.0 340 45 40 4.69 0.6112 WVFGRD96 120.0 340 45 40 4.69 0.6098 WVFGRD96 122.0 340 45 45 4.69 0.6070 WVFGRD96 124.0 340 45 45 4.69 0.6056 WVFGRD96 126.0 340 45 45 4.69 0.6041 WVFGRD96 128.0 340 45 45 4.69 0.6020 WVFGRD96 130.0 340 45 45 4.69 0.6001 WVFGRD96 132.0 340 45 45 4.69 0.5983 WVFGRD96 134.0 340 45 45 4.69 0.5951 WVFGRD96 136.0 340 45 45 4.69 0.5932 WVFGRD96 138.0 340 50 45 4.69 0.5901 WVFGRD96 140.0 340 50 45 4.69 0.5870 WVFGRD96 142.0 340 50 45 4.70 0.5857 WVFGRD96 144.0 340 50 45 4.70 0.5831 WVFGRD96 146.0 340 50 45 4.70 0.5811 WVFGRD96 148.0 340 50 45 4.70 0.5776
The best solution is
WVFGRD96 104.0 335 50 35 4.68 0.6171
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.6 -40 o DIST/3.6 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00