The ANSS event ID is us7000ma74 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us7000ma74/executive.
2024/04/05 14:23:20 40.683 -74.753 5.0 4.7 New Jersey
USGS/SLU Moment Tensor Solution ENS 2024/04/05 14:23:20:0 40.68 -74.75 5.0 4.7 New Jersey Stations used: CN.KGNO IU.HRV LD.BRNY LD.FOR LD.GEDE LD.NPNY N4.J55A N4.J57A N4.J59A N4.J61A N4.K57A N4.K62A N4.L56A N4.L59A N4.L61B N4.L64A N4.M57A N4.M63A N4.N58A N4.N62A NE.BCX NE.HNH US.BINY US.CBN US.LONY WU.MEDO Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.62e+23 dyne-cm Mw = 4.74 Z = 7 km Plane Strike Dip Rake NP1 110 85 40 NP2 16 50 173 Principal Axes: Axis Value Plunge Azimuth T 1.62e+23 31 341 N 0.00e+00 50 116 P -1.62e+23 23 236 Moment Tensor: (dyne-cm) Component Value Mxx 6.36e+22 Mxy -1.01e+23 Mxz 1.00e+23 Myy -8.17e+22 Myz 2.49e+22 Mzz 1.81e+22 #############- ###################--- ######## ############----- ######### T ############------ ########### #############------- ############################-------- ##############################-------- --#############################--------- -----##########################--------- ----------######################---------- ---------------################----------- --------------------###########----------- -------------------------######----------- -----------------------------#---------- ----- --------------------#########--- ---- P -------------------############ --- ------------------############ ----------------------############ -------------------########### ----------------############ -----------########### ---########### Global CMT Convention Moment Tensor: R T P 1.81e+22 1.00e+23 -2.49e+22 1.00e+23 6.36e+22 1.01e+23 -2.49e+22 1.01e+23 -8.17e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240405142320/index.html |
STK = 110 DIP = 85 RAKE = 40 MW = 4.74 HS = 7.0
The NDK file is 20240405142320.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 0000/00/00 00:00:00:0 0.000 0.000 0.0 0.0 Stations used: CN.KGNO IU.HRV IU.SSPA LD.BRNY LD.FOR LD.GEDE LD.NPNY LD.PAL LD.PRNY LD.WVNY N4.J55A N4.J57A N4.J59A N4.J61A N4.K57A N4.K62A N4.L56A N4.L59A N4.L61B N4.L64A N4.M57A N4.M63A N4.N58A N4.N62A N4.P57A N4.P61A N4.Q56A N4.R58B NE.BCX NE.HNH NE.TRY NE.VT1 NE.WES NE.WSPT PE.PAGS PE.PAKS PE.PALB PE.PAMP PE.PAOC PE.PAPL PE.PASH PE.PSMA PE.PSSK PE.PSUB PE.PSUF PE.PSWB US.BINY US.CBN US.LONY WU.MEDO WU.PECO Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.46e+23 dyne-cm Mw = 4.71 Z = 7 km Plane Strike Dip Rake NP1 110 85 40 NP2 16 50 173 Principal Axes: Axis Value Plunge Azimuth T 1.46e+23 31 341 N 0.00e+00 50 116 P -1.46e+23 23 236 Moment Tensor: (dyne-cm) Component Value Mxx 5.73e+22 Mxy -9.07e+22 Mxz 9.03e+22 Myy -7.36e+22 Myz 2.25e+22 Mzz 1.63e+22 #############- ###################--- ######## ############----- ######### T ############------ ########### #############------- ############################-------- ##############################-------- --#############################--------- -----##########################--------- ----------######################---------- ---------------################----------- --------------------###########----------- -------------------------######----------- -----------------------------#---------- ----- --------------------#########--- ---- P -------------------############ --- ------------------############ ----------------------############ -------------------########### ----------------############ -----------########### ---########### Global CMT Convention Moment Tensor: R T P 1.63e+22 9.03e+22 -2.25e+22 9.03e+22 5.73e+22 9.07e+22 -2.25e+22 9.07e+22 -7.36e+22 USGS/SLU Moment Tensor Solution ENS 2024/04/05 14:23:20:0 40.68 -74.75 5.0 4.7 New Jersey Stations used: CN.KGNO IU.HRV LD.BRNY LD.FOR LD.GEDE LD.NPNY N4.J55A N4.J57A N4.J59A N4.J61A N4.K57A N4.K62A N4.L56A N4.L59A N4.L61B N4.L64A N4.M57A N4.M63A N4.N58A N4.N62A NE.BCX NE.HNH US.BINY US.CBN US.LONY WU.MEDO Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.62e+23 dyne-cm Mw = 4.74 Z = 7 km Plane Strike Dip Rake NP1 110 85 40 NP2 16 50 173 Principal Axes: Axis Value Plunge Azimuth T 1.62e+23 31 341 N 0.00e+00 50 116 P -1.62e+23 23 236 Moment Tensor: (dyne-cm) Component Value Mxx 6.36e+22 Mxy -1.01e+23 Mxz 1.00e+23 Myy -8.17e+22 Myz 2.49e+22 Mzz 1.81e+22 #############- ###################--- ######## ############----- ######### T ############------ ########### #############------- ############################-------- ##############################-------- --#############################--------- -----##########################--------- ----------######################---------- ---------------################----------- --------------------###########----------- -------------------------######----------- -----------------------------#---------- ----- --------------------#########--- ---- P -------------------############ --- ------------------############ ----------------------############ -------------------########### ----------------############ -----------########### ---########### Global CMT Convention Moment Tensor: R T P 1.81e+22 1.00e+23 -2.49e+22 1.00e+23 6.36e+22 1.01e+23 -2.49e+22 1.01e+23 -8.17e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240405142320/index.html |
Regional Moment Tensor (Mwr) Moment 1.729e+16 N-m Magnitude 4.76 Mwr Depth 7.0 km Percent DC 58% Half Duration - Catalog US Data Source US 2 Contributor US 2 Nodal Planes Plane Strike Dip Rake NP1 11 45 158 NP2 117 75 47 Principal Axes Axis Value Plunge Azimuth T 1.495e+16 43 345 N 0.398e+16 41 130 P -1.893e+16 18 237 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 105 90 65 4.84 0.5980 WVFGRD96 2.0 105 90 55 4.76 0.6297 WVFGRD96 3.0 285 85 -50 4.74 0.6599 WVFGRD96 4.0 285 85 -45 4.73 0.6877 WVFGRD96 5.0 285 85 -40 4.73 0.7063 WVFGRD96 6.0 110 85 40 4.74 0.7152 WVFGRD96 7.0 110 85 40 4.74 0.7198 WVFGRD96 8.0 110 85 40 4.74 0.7142 WVFGRD96 9.0 285 85 -35 4.75 0.7086 WVFGRD96 10.0 285 85 -35 4.78 0.6948 WVFGRD96 11.0 285 85 -35 4.78 0.6809 WVFGRD96 12.0 285 85 -35 4.79 0.6642 WVFGRD96 13.0 285 85 -35 4.79 0.6470 WVFGRD96 14.0 285 85 -35 4.80 0.6281 WVFGRD96 15.0 285 85 -35 4.80 0.6086 WVFGRD96 16.0 285 85 -35 4.81 0.5880 WVFGRD96 17.0 285 85 -35 4.82 0.5685 WVFGRD96 18.0 285 85 -35 4.82 0.5494 WVFGRD96 19.0 285 85 -35 4.83 0.5306 WVFGRD96 20.0 285 85 -35 4.85 0.5115 WVFGRD96 21.0 285 85 -35 4.85 0.4942 WVFGRD96 22.0 285 85 -35 4.86 0.4765 WVFGRD96 23.0 285 90 -35 4.86 0.4612 WVFGRD96 24.0 285 90 -35 4.87 0.4466 WVFGRD96 25.0 285 85 -35 4.87 0.4341 WVFGRD96 26.0 285 85 -35 4.88 0.4226 WVFGRD96 27.0 285 85 -35 4.88 0.4115 WVFGRD96 28.0 285 90 -40 4.89 0.4017 WVFGRD96 29.0 285 85 -40 4.89 0.3951
The best solution is
WVFGRD96 7.0 110 85 40 4.74 0.7198
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00