Location

Location ANSS

The ANSS event ID is us7000ma74 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us7000ma74/executive.

2024/04/05 14:23:20 40.683 -74.753 5.0 4.7 New Jersey

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2024/04/05 14:23:20:0  40.68  -74.75   5.0 4.7 New Jersey
 
 Stations used:
   CN.KGNO IU.HRV LD.BRNY LD.FOR LD.GEDE LD.NPNY N4.J55A 
   N4.J57A N4.J59A N4.J61A N4.K57A N4.K62A N4.L56A N4.L59A 
   N4.L61B N4.L64A N4.M57A N4.M63A N4.N58A N4.N62A NE.BCX 
   NE.HNH US.BINY US.CBN US.LONY WU.MEDO 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.62e+23 dyne-cm
  Mw = 4.74 
  Z  = 7 km
  Plane   Strike  Dip  Rake
   NP1      110    85    40
   NP2       16    50   173
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.62e+23     31     341
    N   0.00e+00     50     116
    P  -1.62e+23     23     236

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     6.36e+22
       Mxy    -1.01e+23
       Mxz     1.00e+23
       Myy    -8.17e+22
       Myz     2.49e+22
       Mzz     1.81e+22
                                                     
                                                     
                                                     
                                                     
                     #############-                  
                 ###################---              
              ########   ############-----           
             ######### T ############------          
           ###########   #############-------        
          ############################--------       
         ##############################--------      
        --#############################---------     
        -----##########################---------     
       ----------######################----------    
       ---------------################-----------    
       --------------------###########-----------    
       -------------------------######-----------    
        -----------------------------#----------     
        -----   --------------------#########---     
         ---- P -------------------############      
          ---   ------------------############       
           ----------------------############        
             -------------------###########          
              ----------------############           
                 -----------###########              
                     ---###########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.81e+22   1.00e+23  -2.49e+22 
  1.00e+23   6.36e+22   1.01e+23 
 -2.49e+22   1.01e+23  -8.17e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240405142320/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 110
      DIP = 85
     RAKE = 40
       MW = 4.74
       HS = 7.0

The NDK file is 20240405142320.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  0000/00/00 00:00:00:0   0.000    0.000   0.0 0.0 
 
 Stations used:
   CN.KGNO IU.HRV IU.SSPA LD.BRNY LD.FOR LD.GEDE LD.NPNY 
   LD.PAL LD.PRNY LD.WVNY N4.J55A N4.J57A N4.J59A N4.J61A 
   N4.K57A N4.K62A N4.L56A N4.L59A N4.L61B N4.L64A N4.M57A 
   N4.M63A N4.N58A N4.N62A N4.P57A N4.P61A N4.Q56A N4.R58B 
   NE.BCX NE.HNH NE.TRY NE.VT1 NE.WES NE.WSPT PE.PAGS PE.PAKS 
   PE.PALB PE.PAMP PE.PAOC PE.PAPL PE.PASH PE.PSMA PE.PSSK 
   PE.PSUB PE.PSUF PE.PSWB US.BINY US.CBN US.LONY WU.MEDO 
   WU.PECO 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.46e+23 dyne-cm
  Mw = 4.71 
  Z  = 7 km
  Plane   Strike  Dip  Rake
   NP1      110    85    40
   NP2       16    50   173
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.46e+23     31     341
    N   0.00e+00     50     116
    P  -1.46e+23     23     236

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     5.73e+22
       Mxy    -9.07e+22
       Mxz     9.03e+22
       Myy    -7.36e+22
       Myz     2.25e+22
       Mzz     1.63e+22
                                                     
                                                     
                                                     
                                                     
                     #############-                  
                 ###################---              
              ########   ############-----           
             ######### T ############------          
           ###########   #############-------        
          ############################--------       
         ##############################--------      
        --#############################---------     
        -----##########################---------     
       ----------######################----------    
       ---------------################-----------    
       --------------------###########-----------    
       -------------------------######-----------    
        -----------------------------#----------     
        -----   --------------------#########---     
         ---- P -------------------############      
          ---   ------------------############       
           ----------------------############        
             -------------------###########          
              ----------------############           
                 -----------###########              
                     ---###########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.63e+22   9.03e+22  -2.25e+22 
  9.03e+22   5.73e+22   9.07e+22 
 -2.25e+22   9.07e+22  -7.36e+22 

 USGS/SLU Moment Tensor Solution
 ENS  2024/04/05 14:23:20:0  40.68  -74.75   5.0 4.7 New Jersey
 
 Stations used:
   CN.KGNO IU.HRV LD.BRNY LD.FOR LD.GEDE LD.NPNY N4.J55A 
   N4.J57A N4.J59A N4.J61A N4.K57A N4.K62A N4.L56A N4.L59A 
   N4.L61B N4.L64A N4.M57A N4.M63A N4.N58A N4.N62A NE.BCX 
   NE.HNH US.BINY US.CBN US.LONY WU.MEDO 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.62e+23 dyne-cm
  Mw = 4.74 
  Z  = 7 km
  Plane   Strike  Dip  Rake
   NP1      110    85    40
   NP2       16    50   173
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.62e+23     31     341
    N   0.00e+00     50     116
    P  -1.62e+23     23     236

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     6.36e+22
       Mxy    -1.01e+23
       Mxz     1.00e+23
       Myy    -8.17e+22
       Myz     2.49e+22
       Mzz     1.81e+22
                                                     
                                                     
                                                     
                                                     
                     #############-                  
                 ###################---              
              ########   ############-----           
             ######### T ############------          
           ###########   #############-------        
          ############################--------       
         ##############################--------      
        --#############################---------     
        -----##########################---------     
       ----------######################----------    
       ---------------################-----------    
       --------------------###########-----------    
       -------------------------######-----------    
        -----------------------------#----------     
        -----   --------------------#########---     
         ---- P -------------------############      
          ---   ------------------############       
           ----------------------############        
             -------------------###########          
              ----------------############           
                 -----------###########              
                     ---###########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.81e+22   1.00e+23  -2.49e+22 
  1.00e+23   6.36e+22   1.01e+23 
 -2.49e+22   1.01e+23  -8.17e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240405142320/index.html
	
Regional Moment Tensor (Mwr)
Moment
1.729e+16 N-m
Magnitude
4.76 Mwr
Depth
7.0 km
Percent DC
58%
Half Duration
-
Catalog
US
Data Source
US 2
Contributor
US 2
Nodal Planes
Plane	Strike	Dip	Rake
NP1	11	45	158
NP2	117	75	47
Principal Axes
Axis	Value	Plunge	Azimuth
T	1.495e+16	43	345
N	0.398e+16	41	130
P	-1.893e+16	18	237

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   105    90    65   4.84 0.5980
WVFGRD96    2.0   105    90    55   4.76 0.6297
WVFGRD96    3.0   285    85   -50   4.74 0.6599
WVFGRD96    4.0   285    85   -45   4.73 0.6877
WVFGRD96    5.0   285    85   -40   4.73 0.7063
WVFGRD96    6.0   110    85    40   4.74 0.7152
WVFGRD96    7.0   110    85    40   4.74 0.7198
WVFGRD96    8.0   110    85    40   4.74 0.7142
WVFGRD96    9.0   285    85   -35   4.75 0.7086
WVFGRD96   10.0   285    85   -35   4.78 0.6948
WVFGRD96   11.0   285    85   -35   4.78 0.6809
WVFGRD96   12.0   285    85   -35   4.79 0.6642
WVFGRD96   13.0   285    85   -35   4.79 0.6470
WVFGRD96   14.0   285    85   -35   4.80 0.6281
WVFGRD96   15.0   285    85   -35   4.80 0.6086
WVFGRD96   16.0   285    85   -35   4.81 0.5880
WVFGRD96   17.0   285    85   -35   4.82 0.5685
WVFGRD96   18.0   285    85   -35   4.82 0.5494
WVFGRD96   19.0   285    85   -35   4.83 0.5306
WVFGRD96   20.0   285    85   -35   4.85 0.5115
WVFGRD96   21.0   285    85   -35   4.85 0.4942
WVFGRD96   22.0   285    85   -35   4.86 0.4765
WVFGRD96   23.0   285    90   -35   4.86 0.4612
WVFGRD96   24.0   285    90   -35   4.87 0.4466
WVFGRD96   25.0   285    85   -35   4.87 0.4341
WVFGRD96   26.0   285    85   -35   4.88 0.4226
WVFGRD96   27.0   285    85   -35   4.88 0.4115
WVFGRD96   28.0   285    90   -40   4.89 0.4017
WVFGRD96   29.0   285    85   -40   4.89 0.3951

The best solution is

WVFGRD96    7.0   110    85    40   4.74 0.7198

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The CUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
CUS Model with Q from simple gamma values
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
  H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC)   QP   QS  ETAP  ETAS  FREFP  FREFS
  1.0000  5.0000  2.8900  2.5000 0.172E-02 0.387E-02 0.00  0.00  1.00  1.00 
  9.0000  6.1000  3.5200  2.7300 0.160E-02 0.363E-02 0.00  0.00  1.00  1.00 
 10.0000  6.4000  3.7000  2.8200 0.149E-02 0.336E-02 0.00  0.00  1.00  1.00 
 20.0000  6.7000  3.8700  2.9020 0.000E-04 0.000E-04 0.00  0.00  1.00  1.00 
  0.0000  8.1500  4.7000  3.3640 0.194E-02 0.431E-02 0.00  0.00  1.00  1.00 
Last Changed Sun Apr 28 08:19:01 PM CDT 2024