The ANSS event ID is ak0242e66il5 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0242e66il5/executive.
2024/02/21 10:47:30 60.370 -153.061 137.9 4.0 Alaska
USGS/SLU Moment Tensor Solution ENS 2024/02/21 10:47:30:0 60.37 -153.06 137.9 4.0 Alaska Stations used: AK.CAST AK.FIRE AK.J19K AK.L17K AK.L19K AK.L20K AK.N18K AK.O19K AK.P17K AK.PWL AK.RC01 AK.SAW AK.SLK AT.PMR Filtering commands used: cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 2.60e+22 dyne-cm Mw = 4.21 Z = 114 km Plane Strike Dip Rake NP1 60 70 45 NP2 311 48 153 Principal Axes: Axis Value Plunge Azimuth T 2.60e+22 45 285 N 0.00e+00 42 79 P -2.60e+22 13 181 Moment Tensor: (dyne-cm) Component Value Mxx -2.38e+22 Mxy -3.52e+21 Mxz 9.05e+21 Myy 1.20e+22 Myz -1.25e+22 Mzz 1.18e+22 -------------- ---------------------- ---------------------------- ###########------------------- ##################---------------- ######################-------------- #########################-----------## ############################--------#### ######## ###################----###### ######### T ####################-######### ######### ###################---######## #############################------####### ##########################----------###### ######################-------------##### ###################-----------------#### #############----------------------### #####-----------------------------## ---------------------------------# ------------------------------ ------------ ------------- --------- P ---------- ----- ------ Global CMT Convention Moment Tensor: R T P 1.18e+22 9.05e+21 1.25e+22 9.05e+21 -2.38e+22 3.52e+21 1.25e+22 3.52e+21 1.20e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240221104730/index.html |
STK = 60 DIP = 70 RAKE = 45 MW = 4.21 HS = 114.0
The NDK file is 20240221104730.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 330 50 -30 3.42 0.3588 WVFGRD96 4.0 330 75 -25 3.40 0.3764 WVFGRD96 6.0 335 85 -25 3.43 0.3927 WVFGRD96 8.0 340 30 15 3.59 0.4031 WVFGRD96 10.0 335 35 5 3.59 0.4078 WVFGRD96 12.0 335 35 5 3.62 0.4092 WVFGRD96 14.0 335 90 -20 3.54 0.4098 WVFGRD96 16.0 340 35 10 3.66 0.4068 WVFGRD96 18.0 340 35 10 3.69 0.4007 WVFGRD96 20.0 345 30 10 3.73 0.3924 WVFGRD96 22.0 175 -5 0 3.84 0.3932 WVFGRD96 24.0 265 90 -85 3.86 0.3958 WVFGRD96 26.0 85 90 85 3.89 0.3953 WVFGRD96 28.0 85 90 85 3.91 0.3889 WVFGRD96 30.0 235 0 60 3.91 0.3707 WVFGRD96 32.0 220 -5 50 3.93 0.3511 WVFGRD96 34.0 155 0 -20 3.93 0.3239 WVFGRD96 36.0 125 10 -50 3.91 0.2992 WVFGRD96 38.0 260 75 60 3.87 0.2889 WVFGRD96 40.0 265 70 70 4.00 0.2947 WVFGRD96 42.0 265 70 70 4.03 0.3047 WVFGRD96 44.0 265 75 65 4.05 0.3122 WVFGRD96 46.0 60 80 -30 3.96 0.3207 WVFGRD96 48.0 60 80 -40 4.00 0.3351 WVFGRD96 50.0 60 80 -35 4.01 0.3476 WVFGRD96 52.0 60 80 -35 4.03 0.3588 WVFGRD96 54.0 60 85 -25 4.03 0.3693 WVFGRD96 56.0 60 85 -10 4.03 0.3814 WVFGRD96 58.0 240 90 0 4.04 0.3936 WVFGRD96 60.0 240 90 -15 4.06 0.4079 WVFGRD96 62.0 60 90 15 4.07 0.4224 WVFGRD96 64.0 70 65 45 4.17 0.4374 WVFGRD96 66.0 70 65 45 4.18 0.4500 WVFGRD96 68.0 65 65 45 4.20 0.4621 WVFGRD96 70.0 65 65 45 4.21 0.4723 WVFGRD96 72.0 65 65 40 4.19 0.4806 WVFGRD96 74.0 70 70 55 4.22 0.4952 WVFGRD96 76.0 70 70 55 4.22 0.5084 WVFGRD96 78.0 65 70 55 4.24 0.5205 WVFGRD96 80.0 65 70 55 4.24 0.5299 WVFGRD96 82.0 65 70 55 4.24 0.5365 WVFGRD96 84.0 65 70 55 4.24 0.5426 WVFGRD96 86.0 65 70 55 4.23 0.5471 WVFGRD96 88.0 65 70 55 4.23 0.5508 WVFGRD96 90.0 65 70 50 4.21 0.5537 WVFGRD96 92.0 65 70 50 4.21 0.5569 WVFGRD96 94.0 60 70 50 4.24 0.5601 WVFGRD96 96.0 60 70 50 4.24 0.5623 WVFGRD96 98.0 60 70 50 4.23 0.5655 WVFGRD96 100.0 60 70 50 4.23 0.5664 WVFGRD96 102.0 60 70 50 4.23 0.5678 WVFGRD96 104.0 60 70 50 4.23 0.5691 WVFGRD96 106.0 60 70 50 4.23 0.5697 WVFGRD96 108.0 60 70 45 4.21 0.5690 WVFGRD96 110.0 60 70 45 4.21 0.5698 WVFGRD96 112.0 60 70 45 4.21 0.5707 WVFGRD96 114.0 60 70 45 4.21 0.5707 WVFGRD96 116.0 60 70 45 4.21 0.5699 WVFGRD96 118.0 60 70 45 4.21 0.5688 WVFGRD96 120.0 60 70 45 4.21 0.5685 WVFGRD96 122.0 60 70 45 4.21 0.5682 WVFGRD96 124.0 60 70 45 4.21 0.5673 WVFGRD96 126.0 60 70 45 4.21 0.5663 WVFGRD96 128.0 60 70 40 4.20 0.5655 WVFGRD96 130.0 60 70 40 4.20 0.5644 WVFGRD96 132.0 60 70 40 4.20 0.5634 WVFGRD96 134.0 60 70 40 4.20 0.5619 WVFGRD96 136.0 60 70 40 4.20 0.5605 WVFGRD96 138.0 60 70 40 4.20 0.5591 WVFGRD96 140.0 60 70 40 4.20 0.5580 WVFGRD96 142.0 60 70 40 4.20 0.5564 WVFGRD96 144.0 60 70 40 4.20 0.5549 WVFGRD96 146.0 60 70 40 4.20 0.5533 WVFGRD96 148.0 60 70 40 4.20 0.5519
The best solution is
WVFGRD96 114.0 60 70 45 4.21 0.5707
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00