The ANSS event ID is ak02422ry0ln and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak02422ry0ln/executive.
2024/02/14 21:43:37 63.010 -150.616 109.3 4.7 Alaska
USGS/SLU Moment Tensor Solution ENS 2024/02/14 21:43:37:0 63.01 -150.62 109.3 4.7 Alaska Stations used: AK.BAE AK.BPAW AK.CAST AK.CCB AK.CUT AK.DOT AK.GCSA AK.GHO AK.GLI AK.H21K AK.H24K AK.HARP AK.HDA AK.I21K AK.I23K AK.J19K AK.J20K AK.K20K AK.K24K AK.KLU AK.KNK AK.L20K AK.M20K AK.MCK AK.MLY AK.NEA2 AK.PAX AK.PWL AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.WRH AT.MENT AT.PMR AT.TTA IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 1.23e+23 dyne-cm Mw = 4.66 Z = 116 km Plane Strike Dip Rake NP1 220 85 -92 NP2 60 5 -70 Principal Axes: Axis Value Plunge Azimuth T 1.23e+23 40 312 N 0.00e+00 2 220 P -1.23e+23 50 128 Moment Tensor: (dyne-cm) Component Value Mxx 1.19e+22 Mxy -1.05e+22 Mxz 7.76e+22 Myy 8.19e+21 Myz -9.32e+22 Mzz -2.01e+22 ############## ###################### ###########################- ##########################---- ##########################-------- ####### ###############----------- ######## T ##############------------- ######### ############---------------- ######################------------------ ######################-------------------# ####################---------------------# ###################----------------------# #################------------------------# ###############------------ ---------- #############-------------- P ---------# ###########--------------- --------# ########---------------------------# ######---------------------------# ###--------------------------# --------------------------## #-------------------## ##---------### Global CMT Convention Moment Tensor: R T P -2.01e+22 7.76e+22 9.32e+22 7.76e+22 1.19e+22 1.05e+22 9.32e+22 1.05e+22 8.19e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240214214337/index.html |
STK = 60 DIP = 5 RAKE = -70 MW = 4.66 HS = 116.0
The NDK file is 20240214214337.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 120 50 -65 3.77 0.2004 WVFGRD96 4.0 145 65 -10 3.75 0.2073 WVFGRD96 6.0 155 65 15 3.81 0.2266 WVFGRD96 8.0 60 75 -30 3.88 0.2438 WVFGRD96 10.0 240 75 -30 3.93 0.2641 WVFGRD96 12.0 240 75 -25 3.96 0.2806 WVFGRD96 14.0 240 75 -25 4.00 0.2935 WVFGRD96 16.0 240 75 -25 4.03 0.3032 WVFGRD96 18.0 240 75 -20 4.05 0.3112 WVFGRD96 20.0 240 75 -20 4.08 0.3183 WVFGRD96 22.0 240 80 -20 4.10 0.3245 WVFGRD96 24.0 240 80 -20 4.12 0.3312 WVFGRD96 26.0 240 80 -20 4.14 0.3371 WVFGRD96 28.0 65 80 25 4.16 0.3473 WVFGRD96 30.0 65 75 25 4.18 0.3546 WVFGRD96 32.0 65 75 25 4.20 0.3610 WVFGRD96 34.0 60 80 20 4.22 0.3676 WVFGRD96 36.0 60 80 20 4.24 0.3736 WVFGRD96 38.0 60 80 20 4.27 0.3816 WVFGRD96 40.0 60 75 25 4.33 0.3877 WVFGRD96 42.0 55 80 20 4.36 0.3932 WVFGRD96 44.0 55 80 20 4.37 0.3971 WVFGRD96 46.0 55 80 20 4.39 0.3987 WVFGRD96 48.0 55 80 20 4.40 0.4013 WVFGRD96 50.0 55 80 20 4.41 0.4027 WVFGRD96 52.0 55 85 25 4.43 0.4072 WVFGRD96 54.0 55 85 25 4.43 0.4105 WVFGRD96 56.0 55 80 30 4.44 0.4130 WVFGRD96 58.0 55 80 30 4.45 0.4216 WVFGRD96 60.0 235 85 -45 4.47 0.4387 WVFGRD96 62.0 235 85 -50 4.49 0.4559 WVFGRD96 64.0 60 90 50 4.49 0.4708 WVFGRD96 66.0 60 90 50 4.50 0.4842 WVFGRD96 68.0 240 90 -50 4.51 0.4953 WVFGRD96 70.0 55 90 55 4.52 0.5048 WVFGRD96 72.0 55 90 55 4.53 0.5140 WVFGRD96 74.0 235 85 -55 4.53 0.5230 WVFGRD96 76.0 60 90 55 4.54 0.5280 WVFGRD96 78.0 235 85 -60 4.55 0.5366 WVFGRD96 80.0 60 90 60 4.56 0.5382 WVFGRD96 82.0 60 90 60 4.56 0.5432 WVFGRD96 84.0 230 80 -70 4.57 0.5514 WVFGRD96 86.0 220 80 -80 4.59 0.5610 WVFGRD96 88.0 220 80 -85 4.60 0.5746 WVFGRD96 90.0 220 80 -85 4.60 0.5877 WVFGRD96 92.0 20 10 -110 4.61 0.5999 WVFGRD96 94.0 20 10 -110 4.62 0.6107 WVFGRD96 96.0 20 10 -110 4.62 0.6196 WVFGRD96 98.0 20 10 -110 4.62 0.6295 WVFGRD96 100.0 220 85 -90 4.64 0.6386 WVFGRD96 102.0 35 5 -95 4.65 0.6462 WVFGRD96 104.0 220 85 -90 4.65 0.6538 WVFGRD96 106.0 40 5 -90 4.65 0.6599 WVFGRD96 108.0 40 5 -90 4.65 0.6636 WVFGRD96 110.0 50 5 -80 4.66 0.6676 WVFGRD96 112.0 50 5 -80 4.66 0.6699 WVFGRD96 114.0 60 5 -70 4.66 0.6717 WVFGRD96 116.0 60 5 -70 4.66 0.6723 WVFGRD96 118.0 60 5 -70 4.66 0.6714 WVFGRD96 120.0 60 5 -70 4.66 0.6710 WVFGRD96 122.0 60 5 -70 4.66 0.6702 WVFGRD96 124.0 60 5 -70 4.66 0.6685 WVFGRD96 126.0 60 5 -70 4.66 0.6651 WVFGRD96 128.0 70 5 -60 4.67 0.6614 WVFGRD96 130.0 70 5 -60 4.67 0.6589 WVFGRD96 132.0 70 5 -60 4.67 0.6550 WVFGRD96 134.0 70 5 -60 4.67 0.6516 WVFGRD96 136.0 90 10 -35 4.67 0.6474 WVFGRD96 138.0 90 10 -35 4.67 0.6425 WVFGRD96 140.0 90 10 -35 4.67 0.6382 WVFGRD96 142.0 90 10 -35 4.67 0.6329 WVFGRD96 144.0 90 10 -35 4.67 0.6258 WVFGRD96 146.0 90 10 -35 4.67 0.6204 WVFGRD96 148.0 90 10 -35 4.67 0.6145
The best solution is
WVFGRD96 116.0 60 5 -70 4.66 0.6723
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00