The ANSS event ID is ak023fe4b796 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak023fe4b796/executive.
2023/12/01 05:50:26 62.957 -150.435 101.7 5.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2023/12/01 05:50:26:0 62.96 -150.43 101.7 5.1 Alaska Stations used: AK.BAE AK.BPAW AK.CAST AK.CCB AK.CUT AK.DHY AK.DOT AK.GHO AK.H21K AK.HDA AK.I21K AK.I23K AK.J19K AK.J20K AK.K20K AK.K24K AK.KNK AK.L20K AK.L22K AK.M20K AK.MCK AK.MLY AK.NEA2 AK.PAX AK.POKR AK.PPLA AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.TRF AK.WAT6 AK.WRH AT.PMR AV.STLK IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.3 -60 o DIST/3.3 +30 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 4.27e+23 dyne-cm Mw = 5.02 Z = 106 km Plane Strike Dip Rake NP1 336 71 126 NP2 90 40 30 Principal Axes: Axis Value Plunge Azimuth T 4.27e+23 50 287 N 0.00e+00 34 143 P -4.27e+23 18 40 Moment Tensor: (dyne-cm) Component Value Mxx -2.10e+23 Mxy -2.37e+23 Mxz -3.70e+22 Myy -2.08e+16 Myz -2.83e+23 Mzz 2.10e+23 -------------- #####----------------- ##########------------- -- ############------------ P --- ################---------- ----- ##################------------------ ####################------------------ ######################------------------ ######### ###########----------------- ########## T ############----------------- ########## #############---------------- -##########################--------------# --#########################-------------## --#########################-----------## ----#######################---------#### -----######################------##### --------##################--######## -------------########----######### ------------------------###### -----------------------##### --------------------## -------------- Global CMT Convention Moment Tensor: R T P 2.10e+23 -3.70e+22 2.83e+23 -3.70e+22 -2.10e+23 2.37e+23 2.83e+23 2.37e+23 -2.08e+16 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20231201055026/index.html |
STK = 90 DIP = 40 RAKE = 30 MW = 5.02 HS = 106.0
The NDK file is 20231201055026.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2023/12/01 05:50:26:0 62.96 -150.43 101.7 5.1 Alaska Stations used: AK.BAE AK.BPAW AK.CAST AK.CCB AK.CUT AK.DHY AK.DOT AK.GHO AK.H21K AK.HDA AK.I21K AK.I23K AK.J19K AK.J20K AK.K20K AK.K24K AK.KNK AK.L20K AK.L22K AK.M20K AK.MCK AK.MLY AK.NEA2 AK.PAX AK.POKR AK.PPLA AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.TRF AK.WAT6 AK.WRH AT.PMR AV.STLK IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.3 -60 o DIST/3.3 +30 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 4.27e+23 dyne-cm Mw = 5.02 Z = 106 km Plane Strike Dip Rake NP1 336 71 126 NP2 90 40 30 Principal Axes: Axis Value Plunge Azimuth T 4.27e+23 50 287 N 0.00e+00 34 143 P -4.27e+23 18 40 Moment Tensor: (dyne-cm) Component Value Mxx -2.10e+23 Mxy -2.37e+23 Mxz -3.70e+22 Myy -2.08e+16 Myz -2.83e+23 Mzz 2.10e+23 -------------- #####----------------- ##########------------- -- ############------------ P --- ################---------- ----- ##################------------------ ####################------------------ ######################------------------ ######### ###########----------------- ########## T ############----------------- ########## #############---------------- -##########################--------------# --#########################-------------## --#########################-----------## ----#######################---------#### -----######################------##### --------##################--######## -------------########----######### ------------------------###### -----------------------##### --------------------## -------------- Global CMT Convention Moment Tensor: R T P 2.10e+23 -3.70e+22 2.83e+23 -3.70e+22 -2.10e+23 2.37e+23 2.83e+23 2.37e+23 -2.08e+16 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20231201055026/index.html |
Regional Moment Tensor (Mwr) Moment 4.838e+16 N-m Magnitude 5.06 Mwr Depth 102.0 km Percent DC 97% Half Duration - Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 342 74 126 NP2 93 39 26 Principal Axes Axis Value Plunge Azimuth T 4.879e+16 48 290 N -0.083e+16 34 151 P -4.796e+16 21 46 |
W-phase Moment Tensor (Mww) Moment 4.620e+16 N-m Magnitude 5.04 Mww Depth 100.5 km Percent DC 96% Half Duration 0.86 s Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 339 75 128 NP2 87 40 23 Principal Axes Axis Value Plunge Azimuth T 4.569e+16 46 287 N 0.099e+16 36 147 P -4.668e+16 21 41 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -60 o DIST/3.3 +30 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 145 55 -65 4.18 0.2734 WVFGRD96 4.0 145 80 -45 4.22 0.2618 WVFGRD96 6.0 150 90 -40 4.25 0.2924 WVFGRD96 8.0 330 85 40 4.32 0.3173 WVFGRD96 10.0 145 80 -35 4.36 0.3376 WVFGRD96 12.0 145 80 -35 4.39 0.3502 WVFGRD96 14.0 145 80 -30 4.41 0.3534 WVFGRD96 16.0 145 80 -30 4.43 0.3502 WVFGRD96 18.0 145 80 -30 4.45 0.3425 WVFGRD96 20.0 145 80 -30 4.46 0.3314 WVFGRD96 22.0 140 75 -35 4.48 0.3190 WVFGRD96 24.0 240 55 15 4.49 0.3075 WVFGRD96 26.0 245 55 20 4.51 0.3126 WVFGRD96 28.0 245 55 20 4.53 0.3184 WVFGRD96 30.0 90 65 25 4.56 0.3248 WVFGRD96 32.0 95 60 30 4.58 0.3364 WVFGRD96 34.0 90 65 25 4.60 0.3458 WVFGRD96 36.0 75 70 20 4.64 0.3549 WVFGRD96 38.0 90 65 30 4.65 0.3620 WVFGRD96 40.0 90 65 35 4.73 0.3808 WVFGRD96 42.0 90 65 35 4.75 0.3869 WVFGRD96 44.0 80 65 30 4.78 0.3919 WVFGRD96 46.0 80 60 30 4.80 0.3995 WVFGRD96 48.0 80 60 25 4.82 0.4104 WVFGRD96 50.0 90 55 30 4.83 0.4261 WVFGRD96 52.0 90 55 30 4.85 0.4448 WVFGRD96 54.0 90 50 30 4.86 0.4645 WVFGRD96 56.0 90 50 30 4.88 0.4896 WVFGRD96 58.0 90 50 30 4.89 0.5155 WVFGRD96 60.0 90 50 30 4.90 0.5414 WVFGRD96 62.0 90 45 25 4.92 0.5663 WVFGRD96 64.0 90 45 25 4.93 0.5901 WVFGRD96 66.0 85 45 25 4.93 0.6145 WVFGRD96 68.0 85 45 25 4.94 0.6369 WVFGRD96 70.0 85 40 25 4.95 0.6576 WVFGRD96 72.0 85 40 20 4.96 0.6780 WVFGRD96 74.0 85 40 20 4.97 0.6950 WVFGRD96 76.0 85 40 20 4.98 0.7108 WVFGRD96 78.0 85 40 20 4.98 0.7256 WVFGRD96 80.0 85 40 20 4.99 0.7376 WVFGRD96 82.0 85 40 20 4.99 0.7493 WVFGRD96 84.0 85 40 20 4.99 0.7594 WVFGRD96 86.0 85 40 25 4.99 0.7684 WVFGRD96 88.0 90 40 30 4.99 0.7772 WVFGRD96 90.0 90 40 30 5.00 0.7866 WVFGRD96 92.0 90 40 30 5.00 0.7948 WVFGRD96 94.0 90 40 30 5.00 0.8025 WVFGRD96 96.0 90 40 30 5.01 0.8081 WVFGRD96 98.0 90 40 30 5.01 0.8135 WVFGRD96 100.0 90 40 30 5.01 0.8168 WVFGRD96 102.0 90 40 30 5.02 0.8208 WVFGRD96 104.0 90 40 30 5.02 0.8224 WVFGRD96 106.0 90 40 30 5.02 0.8239 WVFGRD96 108.0 90 40 30 5.02 0.8225 WVFGRD96 110.0 90 40 30 5.03 0.8224 WVFGRD96 112.0 90 40 30 5.03 0.8201 WVFGRD96 114.0 90 40 30 5.03 0.8182 WVFGRD96 116.0 90 40 30 5.03 0.8138 WVFGRD96 118.0 90 40 30 5.03 0.8104 WVFGRD96 120.0 90 40 30 5.03 0.8040 WVFGRD96 122.0 90 40 30 5.04 0.7990 WVFGRD96 124.0 90 40 30 5.04 0.7919 WVFGRD96 126.0 90 45 25 5.04 0.7854 WVFGRD96 128.0 90 45 25 5.04 0.7781 WVFGRD96 130.0 90 45 25 5.05 0.7713 WVFGRD96 132.0 90 45 25 5.05 0.7640 WVFGRD96 134.0 90 45 25 5.05 0.7560 WVFGRD96 136.0 90 45 25 5.05 0.7500 WVFGRD96 138.0 90 45 30 5.04 0.7432 WVFGRD96 140.0 90 45 30 5.05 0.7373 WVFGRD96 142.0 90 45 30 5.05 0.7322 WVFGRD96 144.0 90 45 30 5.05 0.7266 WVFGRD96 146.0 90 45 30 5.05 0.7217 WVFGRD96 148.0 90 45 30 5.05 0.7155
The best solution is
WVFGRD96 106.0 90 40 30 5.02 0.8239
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -60 o DIST/3.3 +30 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00