The ANSS event ID is us7000la9a and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us7000la9a/executive.
2023/11/11 00:18:42 39.055 -97.635 5.0 4 Kansas
USGS/SLU Moment Tensor Solution ENS 2023/11/11 00:18:42:0 39.06 -97.64 5.0 4.0 Kansas Stations used: C0.LAMA GM.IWM01 GS.KS28 GS.OK051 GS.OK052 N4.BGNE N4.K30B N4.KSCO N4.L34B N4.N35B N4.N38B N4.P38B N4.R32B N4.S39B N4.T35B N4.TUL3 N4.U38B O2.ARC2 O2.CHAN O2.CRES O2.DOVR O2.DRIP O2.DUST O2.FREE O2.GORE O2.POCA O2.PW05 O2.PW18 O2.SC16 O2.SC19 O2.SMNL O2.YUKO OK.CROK OK.W35A TX.DRZT US.CBKS US.KSU1 Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.10e+22 dyne-cm Mw = 3.96 Z = 4 km Plane Strike Dip Rake NP1 295 75 -25 NP2 32 66 -164 Principal Axes: Axis Value Plunge Azimuth T 1.10e+22 6 345 N 0.00e+00 61 86 P -1.10e+22 28 252 Moment Tensor: (dyne-cm) Component Value Mxx 9.26e+21 Mxy -5.28e+21 Mxz 2.55e+21 Myy -6.94e+21 Myz 4.03e+21 Mzz -2.32e+21 T ########### #### ############### #########################--- ##########################---- ############################------ #############################------- ------#######################--------- --------------################---------- -------------------##########----------- ------------------------#####------------- ----------------------------#------------- ----------------------------###----------- ----- ------------------#######--------- ---- P -----------------###########----- ---- ----------------##############--- ---------------------################- ------------------################## ---------------################### -----------################### -------##################### ###################### ############## Global CMT Convention Moment Tensor: R T P -2.32e+21 2.55e+21 -4.03e+21 2.55e+21 9.26e+21 5.28e+21 -4.03e+21 5.28e+21 -6.94e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20231111001842/index.html |
STK = 295 DIP = 75 RAKE = -25 MW = 3.96 HS = 4.0
The NDK file is 20231111001842.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2023/11/11 00:18:42:0 39.06 -97.64 5.0 4.0 Kansas Stations used: C0.LAMA GM.IWM01 GS.KS28 GS.OK051 GS.OK052 N4.BGNE N4.K30B N4.KSCO N4.L34B N4.N35B N4.N38B N4.P38B N4.R32B N4.S39B N4.T35B N4.TUL3 N4.U38B O2.ARC2 O2.CHAN O2.CRES O2.DOVR O2.DRIP O2.DUST O2.FREE O2.GORE O2.POCA O2.PW05 O2.PW18 O2.SC16 O2.SC19 O2.SMNL O2.YUKO OK.CROK OK.W35A TX.DRZT US.CBKS US.KSU1 Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.10e+22 dyne-cm Mw = 3.96 Z = 4 km Plane Strike Dip Rake NP1 295 75 -25 NP2 32 66 -164 Principal Axes: Axis Value Plunge Azimuth T 1.10e+22 6 345 N 0.00e+00 61 86 P -1.10e+22 28 252 Moment Tensor: (dyne-cm) Component Value Mxx 9.26e+21 Mxy -5.28e+21 Mxz 2.55e+21 Myy -6.94e+21 Myz 4.03e+21 Mzz -2.32e+21 T ########### #### ############### #########################--- ##########################---- ############################------ #############################------- ------#######################--------- --------------################---------- -------------------##########----------- ------------------------#####------------- ----------------------------#------------- ----------------------------###----------- ----- ------------------#######--------- ---- P -----------------###########----- ---- ----------------##############--- ---------------------################- ------------------################## ---------------################### -----------################### -------##################### ###################### ############## Global CMT Convention Moment Tensor: R T P -2.32e+21 2.55e+21 -4.03e+21 2.55e+21 9.26e+21 5.28e+21 -4.03e+21 5.28e+21 -6.94e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20231111001842/index.html |
Regional Moment Tensor (Mwr) Moment 1.458e+15 N-m Magnitude 4.04 Mwr Depth 3.0 km Percent DC 62% Half Duration - Catalog US Data Source US 1 Contributor US 1 Nodal Planes Plane Strike Dip Rake NP1 295 59 -15 NP2 32 78 -148 Principal Axes Axis Value Plunge Azimuth T 1.584e+15 12 160 N -0.298e+15 56 51 P -1.286e+15 31 258 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 120 85 5 3.75 0.4839 WVFGRD96 2.0 295 65 -15 3.87 0.5554 WVFGRD96 3.0 295 75 -25 3.92 0.5999 WVFGRD96 4.0 295 75 -25 3.96 0.6217 WVFGRD96 5.0 295 75 -20 3.98 0.6200 WVFGRD96 6.0 120 90 20 4.00 0.6069 WVFGRD96 7.0 120 90 20 4.01 0.5989 WVFGRD96 8.0 300 90 -20 4.02 0.5876 WVFGRD96 9.0 120 90 20 4.03 0.5743 WVFGRD96 10.0 295 85 -20 4.03 0.5610 WVFGRD96 11.0 295 85 -20 4.04 0.5472 WVFGRD96 12.0 295 75 -15 4.05 0.5324 WVFGRD96 13.0 295 75 -10 4.06 0.5165 WVFGRD96 14.0 295 70 -10 4.07 0.5028 WVFGRD96 15.0 295 70 -10 4.08 0.4896 WVFGRD96 16.0 295 70 -10 4.08 0.4758 WVFGRD96 17.0 300 75 10 4.10 0.4623 WVFGRD96 18.0 300 75 10 4.10 0.4482 WVFGRD96 19.0 300 70 10 4.11 0.4335
The best solution is
WVFGRD96 4.0 295 75 -25 3.96 0.6217
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The GSKAN.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 20 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 0.7000 3.7762 2.1823 2.2792 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 0.7000 3.7810 2.1854 2.2818 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 1.0000 5.3466 3.0853 2.5688 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 1.0000 5.8307 3.3645 2.6648 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 7.0000 6.1587 3.5538 2.7469 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.3056 3.6456 2.7933 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.6013 3.8129 2.8766 0.00 0.00 0.00 0.00 1.00 1.00 0.0000 8.0871 4.6640 3.3410 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00