Location

Location ANSS

The ANSS event ID is tx2023vxae and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/tx2023vxae/executive.

2023/11/08 10:27:49 31.622 -103.982 7.4 5.2 Texas

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2023/11/08 10:27:49:0  31.62 -103.98   7.4 5.2 Texas
 
 Stations used:
   4O.AT01 4O.BP01 4O.CV01 4O.DB02 4O.DB03 4O.DB04 4O.GV01 
   4O.GV02 4O.LWM1 4O.LWM2 4O.MBBB2 4O.MBBB4 4O.MBBB5 4O.MID01 
   4O.MID02 4O.MID03 4O.MO01 4O.OP01 4O.SA02 4O.SA04 4O.SA06 
   4O.SA07 4O.SA09 4O.SM01 4O.WB06 4O.WB07 4O.WB08 4O.WB09 
   4O.WB10 4O.WB11 4O.WB12 4T.NM01 4T.NM02 4T.NM03 TX.435B 
   TX.ALPN TX.APMT TX.BRDY TX.DKNS TX.DRZT TX.FW06 TX.FW07 
   TX.FW11 TX.FW14 TX.FW15 TX.HNDO TX.INDO TX.MB01 TX.MB02 
   TX.MB03 TX.MB04 TX.MB05 TX.MB06 TX.MB07 TX.MB08 TX.MB09 
   TX.MB10 TX.MB11 TX.MB12 TX.MB13 TX.MB14 TX.MB15 TX.MB17 
   TX.MB18 TX.MB19 TX.MB22 TX.MB23 TX.MNHN TX.ODSA TX.OZNA 
   TX.PB01 TX.PB03 TX.PB04 TX.PB05 TX.PB07 TX.PB08 TX.PB09 
   TX.PB10 TX.PB11 TX.PB12 TX.PB13 TX.PB14 TX.PB16 TX.PB17 
   TX.PB18 TX.PB21 TX.PB22 TX.PB28 TX.PB29 TX.PB30 TX.PB35 
   TX.PB37 TX.PB38 TX.PB42 TX.PB43 TX.PB44 TX.PB51 TX.PCOS 
   TX.PECS TX.PH02 TX.PH03 TX.PLPT TX.POST TX.RTBA TX.SAND 
   TX.SGCY TX.SMWD TX.SN02 TX.SN03 TX.SN04 TX.SN07 TX.SN08 
   TX.SN09 TX.SN10 TX.VHRN TX.WTFS 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +60
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 5.25e+23 dyne-cm
  Mw = 5.08 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      289    55   -93
   NP2      115    35   -85
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.25e+23     10      21
    N   0.00e+00      3     291
    P  -5.25e+23     79     185

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.24e+23
       Mxy     1.71e+23
       Mxz     1.78e+23
       Myy     6.76e+22
       Myz     4.16e+22
       Mzz    -4.91e+23
                                                     
                                                     
                                                     
                                                     
                     ############                    
                 ################ T ###              
              ###################   ######           
             ##############################          
           ##################################        
          ####################################       
         ##--------------------################      
        #--------------------------#############     
        #-----------------------------##########     
       ###-------------------------------########    
       ###---------------------------------######    
       ####---------------   ----------------####    
       #####-------------- P -----------------###    
        #####-------------   ------------------#     
        ######----------------------------------     
         #######-------------------------------      
          #########--------------------------#       
           ###########---------------------##        
             ##############-----------#####          
              ############################           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -4.91e+23   1.78e+23  -4.16e+22 
  1.78e+23   4.24e+23  -1.71e+23 
 -4.16e+22  -1.71e+23   6.76e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20231108102749/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 115
      DIP = 35
     RAKE = -85
       MW = 5.08
       HS = 8.0

The NDK file is 20231108102749.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSW
 USGS/SLU Moment Tensor Solution
 ENS  2023/11/08 10:27:49:0  31.62 -103.98   7.4 5.2 Texas
 
 Stations used:
   4O.AT01 4O.BP01 4O.CV01 4O.DB02 4O.DB03 4O.DB04 4O.GV01 
   4O.GV02 4O.LWM1 4O.LWM2 4O.MBBB2 4O.MBBB4 4O.MBBB5 4O.MID01 
   4O.MID02 4O.MID03 4O.MO01 4O.OP01 4O.SA02 4O.SA04 4O.SA06 
   4O.SA07 4O.SA09 4O.SM01 4O.WB06 4O.WB07 4O.WB08 4O.WB09 
   4O.WB10 4O.WB11 4O.WB12 4T.NM01 4T.NM02 4T.NM03 TX.435B 
   TX.ALPN TX.APMT TX.BRDY TX.DKNS TX.DRZT TX.FW06 TX.FW07 
   TX.FW11 TX.FW14 TX.FW15 TX.HNDO TX.INDO TX.MB01 TX.MB02 
   TX.MB03 TX.MB04 TX.MB05 TX.MB06 TX.MB07 TX.MB08 TX.MB09 
   TX.MB10 TX.MB11 TX.MB12 TX.MB13 TX.MB14 TX.MB15 TX.MB17 
   TX.MB18 TX.MB19 TX.MB22 TX.MB23 TX.MNHN TX.ODSA TX.OZNA 
   TX.PB01 TX.PB03 TX.PB04 TX.PB05 TX.PB07 TX.PB08 TX.PB09 
   TX.PB10 TX.PB11 TX.PB12 TX.PB13 TX.PB14 TX.PB16 TX.PB17 
   TX.PB18 TX.PB21 TX.PB22 TX.PB28 TX.PB29 TX.PB30 TX.PB35 
   TX.PB37 TX.PB38 TX.PB42 TX.PB43 TX.PB44 TX.PB51 TX.PCOS 
   TX.PECS TX.PH02 TX.PH03 TX.PLPT TX.POST TX.RTBA TX.SAND 
   TX.SGCY TX.SMWD TX.SN02 TX.SN03 TX.SN04 TX.SN07 TX.SN08 
   TX.SN09 TX.SN10 TX.VHRN TX.WTFS 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +60
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 5.25e+23 dyne-cm
  Mw = 5.08 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      289    55   -93
   NP2      115    35   -85
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.25e+23     10      21
    N   0.00e+00      3     291
    P  -5.25e+23     79     185

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.24e+23
       Mxy     1.71e+23
       Mxz     1.78e+23
       Myy     6.76e+22
       Myz     4.16e+22
       Mzz    -4.91e+23
                                                     
                                                     
                                                     
                                                     
                     ############                    
                 ################ T ###              
              ###################   ######           
             ##############################          
           ##################################        
          ####################################       
         ##--------------------################      
        #--------------------------#############     
        #-----------------------------##########     
       ###-------------------------------########    
       ###---------------------------------######    
       ####---------------   ----------------####    
       #####-------------- P -----------------###    
        #####-------------   ------------------#     
        ######----------------------------------     
         #######-------------------------------      
          #########--------------------------#       
           ###########---------------------##        
             ##############-----------#####          
              ############################           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -4.91e+23   1.78e+23  -4.16e+22 
  1.78e+23   4.24e+23  -1.71e+23 
 -4.16e+22  -1.71e+23   6.76e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20231108102749/index.html
	
W-phase Moment Tensor (Mww)
Moment
7.621e+16 N-m
Magnitude
5.19 Mww
Depth
11.5 km
Percent DC
99%
Half Duration
1.03 s
Catalog
US
Data Source
US 2
Contributor
US 2
Nodal Planes
Plane	Strike	Dip	Rake
NP1	286	45	-91
NP2	107	45	-89
Principal Axes
Axis	Value	Plunge	Azimuth
T	7.611e+16	0	197
N	0.019e+16	0	287
P	-7.631e+16	90	100

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   330    65   -45   4.67 0.2491
WVFGRD96    2.0   310    55   -70   4.85 0.3268
WVFGRD96    3.0   130    25   -65   4.95 0.3853
WVFGRD96    4.0   110    25  -100   4.98 0.4547
WVFGRD96    5.0   105    30  -100   4.99 0.4982
WVFGRD96    6.0   115    35   -85   5.00 0.5182
WVFGRD96    7.0   115    35   -85   5.01 0.5268
WVFGRD96    8.0   115    35   -85   5.08 0.5461
WVFGRD96    9.0   115    35   -85   5.08 0.5308
WVFGRD96   10.0   115    40   -85   5.08 0.5065
WVFGRD96   11.0   115    40   -85   5.07 0.4797
WVFGRD96   12.0   120    50   -80   5.06 0.4551
WVFGRD96   13.0   345    65    35   5.01 0.4364
WVFGRD96   14.0   345    65    30   5.02 0.4226
WVFGRD96   15.0   345    65    30   5.02 0.4096
WVFGRD96   16.0   345    65    30   5.02 0.3969
WVFGRD96   17.0   345    65    25   5.03 0.3850
WVFGRD96   18.0   345    65    25   5.03 0.3733
WVFGRD96   19.0   345    65    25   5.04 0.3626
WVFGRD96   20.0   345    65    25   5.05 0.3529
WVFGRD96   21.0   345    65    25   5.05 0.3431
WVFGRD96   22.0   345    65    25   5.06 0.3342
WVFGRD96   23.0   345    65    25   5.06 0.3263
WVFGRD96   24.0   345    65    25   5.07 0.3188
WVFGRD96   25.0   345    65    20   5.08 0.3121
WVFGRD96   26.0   335    75   -15   5.11 0.3123
WVFGRD96   27.0   335    75   -15   5.12 0.3091
WVFGRD96   28.0   335    75   -15   5.13 0.3056
WVFGRD96   29.0   335    75   -15   5.13 0.3015

The best solution is

WVFGRD96    8.0   115    35   -85   5.08 0.5461

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Tue Apr 23 05:22:32 AM CDT 2024