The ANSS event ID is tx2023vxae and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/tx2023vxae/executive.
2023/11/08 10:27:49 31.622 -103.982 7.4 5.2 Texas
USGS/SLU Moment Tensor Solution ENS 2023/11/08 10:27:49:0 31.62 -103.98 7.4 5.2 Texas Stations used: 4O.AT01 4O.BP01 4O.CV01 4O.DB02 4O.DB03 4O.DB04 4O.GV01 4O.GV02 4O.LWM1 4O.LWM2 4O.MBBB2 4O.MBBB4 4O.MBBB5 4O.MID01 4O.MID02 4O.MID03 4O.MO01 4O.OP01 4O.SA02 4O.SA04 4O.SA06 4O.SA07 4O.SA09 4O.SM01 4O.WB06 4O.WB07 4O.WB08 4O.WB09 4O.WB10 4O.WB11 4O.WB12 4T.NM01 4T.NM02 4T.NM03 TX.435B TX.ALPN TX.APMT TX.BRDY TX.DKNS TX.DRZT TX.FW06 TX.FW07 TX.FW11 TX.FW14 TX.FW15 TX.HNDO TX.INDO TX.MB01 TX.MB02 TX.MB03 TX.MB04 TX.MB05 TX.MB06 TX.MB07 TX.MB08 TX.MB09 TX.MB10 TX.MB11 TX.MB12 TX.MB13 TX.MB14 TX.MB15 TX.MB17 TX.MB18 TX.MB19 TX.MB22 TX.MB23 TX.MNHN TX.ODSA TX.OZNA TX.PB01 TX.PB03 TX.PB04 TX.PB05 TX.PB07 TX.PB08 TX.PB09 TX.PB10 TX.PB11 TX.PB12 TX.PB13 TX.PB14 TX.PB16 TX.PB17 TX.PB18 TX.PB21 TX.PB22 TX.PB28 TX.PB29 TX.PB30 TX.PB35 TX.PB37 TX.PB38 TX.PB42 TX.PB43 TX.PB44 TX.PB51 TX.PCOS TX.PECS TX.PH02 TX.PH03 TX.PLPT TX.POST TX.RTBA TX.SAND TX.SGCY TX.SMWD TX.SN02 TX.SN03 TX.SN04 TX.SN07 TX.SN08 TX.SN09 TX.SN10 TX.VHRN TX.WTFS Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 5.25e+23 dyne-cm Mw = 5.08 Z = 8 km Plane Strike Dip Rake NP1 289 55 -93 NP2 115 35 -85 Principal Axes: Axis Value Plunge Azimuth T 5.25e+23 10 21 N 0.00e+00 3 291 P -5.25e+23 79 185 Moment Tensor: (dyne-cm) Component Value Mxx 4.24e+23 Mxy 1.71e+23 Mxz 1.78e+23 Myy 6.76e+22 Myz 4.16e+22 Mzz -4.91e+23 ############ ################ T ### ################### ###### ############################## ################################## #################################### ##--------------------################ #--------------------------############# #-----------------------------########## ###-------------------------------######## ###---------------------------------###### ####--------------- ----------------#### #####-------------- P -----------------### #####------------- ------------------# ######---------------------------------- #######------------------------------- #########--------------------------# ###########---------------------## ##############-----------##### ############################ ###################### ############## Global CMT Convention Moment Tensor: R T P -4.91e+23 1.78e+23 -4.16e+22 1.78e+23 4.24e+23 -1.71e+23 -4.16e+22 -1.71e+23 6.76e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20231108102749/index.html |
STK = 115 DIP = 35 RAKE = -85 MW = 5.08 HS = 8.0
The NDK file is 20231108102749.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2023/11/08 10:27:49:0 31.62 -103.98 7.4 5.2 Texas Stations used: 4O.AT01 4O.BP01 4O.CV01 4O.DB02 4O.DB03 4O.DB04 4O.GV01 4O.GV02 4O.LWM1 4O.LWM2 4O.MBBB2 4O.MBBB4 4O.MBBB5 4O.MID01 4O.MID02 4O.MID03 4O.MO01 4O.OP01 4O.SA02 4O.SA04 4O.SA06 4O.SA07 4O.SA09 4O.SM01 4O.WB06 4O.WB07 4O.WB08 4O.WB09 4O.WB10 4O.WB11 4O.WB12 4T.NM01 4T.NM02 4T.NM03 TX.435B TX.ALPN TX.APMT TX.BRDY TX.DKNS TX.DRZT TX.FW06 TX.FW07 TX.FW11 TX.FW14 TX.FW15 TX.HNDO TX.INDO TX.MB01 TX.MB02 TX.MB03 TX.MB04 TX.MB05 TX.MB06 TX.MB07 TX.MB08 TX.MB09 TX.MB10 TX.MB11 TX.MB12 TX.MB13 TX.MB14 TX.MB15 TX.MB17 TX.MB18 TX.MB19 TX.MB22 TX.MB23 TX.MNHN TX.ODSA TX.OZNA TX.PB01 TX.PB03 TX.PB04 TX.PB05 TX.PB07 TX.PB08 TX.PB09 TX.PB10 TX.PB11 TX.PB12 TX.PB13 TX.PB14 TX.PB16 TX.PB17 TX.PB18 TX.PB21 TX.PB22 TX.PB28 TX.PB29 TX.PB30 TX.PB35 TX.PB37 TX.PB38 TX.PB42 TX.PB43 TX.PB44 TX.PB51 TX.PCOS TX.PECS TX.PH02 TX.PH03 TX.PLPT TX.POST TX.RTBA TX.SAND TX.SGCY TX.SMWD TX.SN02 TX.SN03 TX.SN04 TX.SN07 TX.SN08 TX.SN09 TX.SN10 TX.VHRN TX.WTFS Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 5.25e+23 dyne-cm Mw = 5.08 Z = 8 km Plane Strike Dip Rake NP1 289 55 -93 NP2 115 35 -85 Principal Axes: Axis Value Plunge Azimuth T 5.25e+23 10 21 N 0.00e+00 3 291 P -5.25e+23 79 185 Moment Tensor: (dyne-cm) Component Value Mxx 4.24e+23 Mxy 1.71e+23 Mxz 1.78e+23 Myy 6.76e+22 Myz 4.16e+22 Mzz -4.91e+23 ############ ################ T ### ################### ###### ############################## ################################## #################################### ##--------------------################ #--------------------------############# #-----------------------------########## ###-------------------------------######## ###---------------------------------###### ####--------------- ----------------#### #####-------------- P -----------------### #####------------- ------------------# ######---------------------------------- #######------------------------------- #########--------------------------# ###########---------------------## ##############-----------##### ############################ ###################### ############## Global CMT Convention Moment Tensor: R T P -4.91e+23 1.78e+23 -4.16e+22 1.78e+23 4.24e+23 -1.71e+23 -4.16e+22 -1.71e+23 6.76e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20231108102749/index.html |
W-phase Moment Tensor (Mww) Moment 7.621e+16 N-m Magnitude 5.19 Mww Depth 11.5 km Percent DC 99% Half Duration 1.03 s Catalog US Data Source US 2 Contributor US 2 Nodal Planes Plane Strike Dip Rake NP1 286 45 -91 NP2 107 45 -89 Principal Axes Axis Value Plunge Azimuth T 7.611e+16 0 197 N 0.019e+16 0 287 P -7.631e+16 90 100 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 330 65 -45 4.67 0.2491 WVFGRD96 2.0 310 55 -70 4.85 0.3268 WVFGRD96 3.0 130 25 -65 4.95 0.3853 WVFGRD96 4.0 110 25 -100 4.98 0.4547 WVFGRD96 5.0 105 30 -100 4.99 0.4982 WVFGRD96 6.0 115 35 -85 5.00 0.5182 WVFGRD96 7.0 115 35 -85 5.01 0.5268 WVFGRD96 8.0 115 35 -85 5.08 0.5461 WVFGRD96 9.0 115 35 -85 5.08 0.5308 WVFGRD96 10.0 115 40 -85 5.08 0.5065 WVFGRD96 11.0 115 40 -85 5.07 0.4797 WVFGRD96 12.0 120 50 -80 5.06 0.4551 WVFGRD96 13.0 345 65 35 5.01 0.4364 WVFGRD96 14.0 345 65 30 5.02 0.4226 WVFGRD96 15.0 345 65 30 5.02 0.4096 WVFGRD96 16.0 345 65 30 5.02 0.3969 WVFGRD96 17.0 345 65 25 5.03 0.3850 WVFGRD96 18.0 345 65 25 5.03 0.3733 WVFGRD96 19.0 345 65 25 5.04 0.3626 WVFGRD96 20.0 345 65 25 5.05 0.3529 WVFGRD96 21.0 345 65 25 5.05 0.3431 WVFGRD96 22.0 345 65 25 5.06 0.3342 WVFGRD96 23.0 345 65 25 5.06 0.3263 WVFGRD96 24.0 345 65 25 5.07 0.3188 WVFGRD96 25.0 345 65 20 5.08 0.3121 WVFGRD96 26.0 335 75 -15 5.11 0.3123 WVFGRD96 27.0 335 75 -15 5.12 0.3091 WVFGRD96 28.0 335 75 -15 5.13 0.3056 WVFGRD96 29.0 335 75 -15 5.13 0.3015
The best solution is
WVFGRD96 8.0 115 35 -85 5.08 0.5461
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00