The ANSS event ID is ak023dz554ac and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak023dz554ac/executive.
2023/10/31 23:12:35 60.953 -150.662 44.9 4 Alaska
USGS/SLU Moment Tensor Solution ENS 2023/10/31 23:12:35:0 60.95 -150.66 44.9 4.0 Alaska Stations used: AK.BAE AK.BRLK AK.CAPN AK.CNP AK.FID AK.FIRE AK.GHO AK.GLI AK.HOM AK.KNK AK.M19K AK.PPLA AK.PWL AK.RC01 AK.SAW AK.SKN AK.SLK AK.SWD AK.WAT6 AT.PMR AV.RED AV.STLK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 1.78e+22 dyne-cm Mw = 4.10 Z = 56 km Plane Strike Dip Rake NP1 170 65 -65 NP2 302 35 -132 Principal Axes: Axis Value Plunge Azimuth T 1.78e+22 16 242 N 0.00e+00 23 339 P -1.78e+22 62 119 Moment Tensor: (dyne-cm) Component Value Mxx 2.70e+21 Mxy 8.51e+21 Mxz 1.33e+21 Myy 9.64e+21 Myz -1.08e+22 Mzz -1.23e+22 ---########### ------################ --------#################### --#######--------############# -#########-------------########### ###########----------------######### ############------------------######## #############--------------------####### #############---------------------###### ##############-----------------------##### ##############-----------------------##### ###############---------- ----------#### ###############---------- P -----------### ###############--------- -----------## ### #########-----------------------## ## T ##########----------------------# # ##########---------------------- ##############-------------------- #############----------------- #############--------------- ############---------- #########----- Global CMT Convention Moment Tensor: R T P -1.23e+22 1.33e+21 1.08e+22 1.33e+21 2.70e+21 -8.51e+21 1.08e+22 -8.51e+21 9.64e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20231031231235/index.html |
STK = 170 DIP = 65 RAKE = -65 MW = 4.10 HS = 56.0
The NDK file is 20231031231235.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 165 45 90 3.25 0.1343 WVFGRD96 2.0 345 45 90 3.37 0.1674 WVFGRD96 3.0 320 65 65 3.42 0.1712 WVFGRD96 4.0 125 90 -65 3.47 0.2067 WVFGRD96 5.0 125 90 -65 3.49 0.2407 WVFGRD96 6.0 125 90 -65 3.50 0.2663 WVFGRD96 7.0 305 85 60 3.50 0.2868 WVFGRD96 8.0 120 90 -65 3.58 0.2986 WVFGRD96 9.0 120 90 -65 3.59 0.3128 WVFGRD96 10.0 300 90 65 3.59 0.3229 WVFGRD96 11.0 305 90 60 3.59 0.3305 WVFGRD96 12.0 115 80 -65 3.61 0.3383 WVFGRD96 13.0 115 80 -65 3.62 0.3432 WVFGRD96 14.0 115 80 -65 3.63 0.3466 WVFGRD96 15.0 115 80 -65 3.64 0.3516 WVFGRD96 16.0 115 80 -65 3.65 0.3557 WVFGRD96 17.0 115 80 -60 3.66 0.3594 WVFGRD96 18.0 115 80 -60 3.67 0.3626 WVFGRD96 19.0 115 80 -60 3.67 0.3649 WVFGRD96 20.0 115 80 -60 3.68 0.3665 WVFGRD96 21.0 115 80 -60 3.70 0.3677 WVFGRD96 22.0 120 85 -60 3.70 0.3682 WVFGRD96 23.0 120 85 -60 3.71 0.3680 WVFGRD96 24.0 120 85 -60 3.72 0.3663 WVFGRD96 25.0 120 85 -60 3.73 0.3638 WVFGRD96 26.0 120 85 -60 3.74 0.3604 WVFGRD96 27.0 105 90 -75 3.77 0.3551 WVFGRD96 28.0 105 90 -75 3.78 0.3542 WVFGRD96 29.0 105 90 -75 3.78 0.3520 WVFGRD96 30.0 105 90 -75 3.79 0.3494 WVFGRD96 31.0 180 85 -80 3.78 0.3501 WVFGRD96 32.0 180 85 -75 3.79 0.3532 WVFGRD96 33.0 180 85 -75 3.80 0.3581 WVFGRD96 34.0 185 85 -75 3.81 0.3646 WVFGRD96 35.0 180 80 -70 3.82 0.3712 WVFGRD96 36.0 180 80 -70 3.83 0.3784 WVFGRD96 37.0 175 70 -60 3.86 0.3905 WVFGRD96 38.0 170 65 -60 3.87 0.4107 WVFGRD96 39.0 175 65 -60 3.89 0.4305 WVFGRD96 40.0 170 65 -65 3.99 0.4318 WVFGRD96 41.0 170 65 -65 4.00 0.4404 WVFGRD96 42.0 170 65 -65 4.01 0.4481 WVFGRD96 43.0 170 65 -65 4.02 0.4549 WVFGRD96 44.0 170 65 -65 4.03 0.4602 WVFGRD96 45.0 170 65 -65 4.04 0.4658 WVFGRD96 46.0 170 65 -65 4.05 0.4712 WVFGRD96 47.0 170 65 -65 4.05 0.4768 WVFGRD96 48.0 170 65 -65 4.06 0.4807 WVFGRD96 49.0 170 65 -65 4.07 0.4843 WVFGRD96 50.0 170 65 -65 4.07 0.4884 WVFGRD96 51.0 170 65 -65 4.08 0.4906 WVFGRD96 52.0 170 65 -65 4.08 0.4924 WVFGRD96 53.0 170 65 -65 4.09 0.4952 WVFGRD96 54.0 170 65 -65 4.09 0.4955 WVFGRD96 55.0 170 65 -65 4.10 0.4962 WVFGRD96 56.0 170 65 -65 4.10 0.4973 WVFGRD96 57.0 170 65 -65 4.11 0.4967 WVFGRD96 58.0 170 65 -65 4.11 0.4968 WVFGRD96 59.0 170 65 -65 4.12 0.4959
The best solution is
WVFGRD96 56.0 170 65 -65 4.10 0.4973
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00