The ANSS event ID is ak023dtut7mp and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak023dtut7mp/executive.
2023/10/28 03:44:10 59.003 -136.550 5.9 5.3 Alaska
USGS/SLU Moment Tensor Solution ENS 2023/10/28 03:44:10:0 59.00 -136.55 5.9 5.3 Alaska Stations used: AK.BAGL AK.BAL AK.BARK AK.BARN AK.BERG AK.BESE AK.BMR AK.CHX AK.CRQ AK.DOT AK.ISLE AK.JIS AK.KHIT AK.KIAG AK.LOGN AK.M27K AK.MCAR AK.MESA AK.PAX AK.PIN AK.PNL AK.PS12 AK.PTPK AK.R32K AK.RKAV AK.S31K AK.S32K AK.SAMH AK.TGL AK.U33K AK.V35K AK.VRDI AK.WAX AT.CRAG AT.MENT AT.SIT AT.SKAG AV.EDCR AV.EDES AV.EDSO AV.N25K CN.ATLI CN.BRWY CN.DAWY CN.HYT CN.PLBC CN.RUBB CN.WHY CN.YUK3 CN.YUK4 CN.YUK6 CN.YUK7 CN.YUK8 EO.KLRS NY.MAYO NY.MMPY NY.WTLY US.WRAK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 7.16e+23 dyne-cm Mw = 5.17 Z = 4 km Plane Strike Dip Rake NP1 2 56 113 NP2 145 40 60 Principal Axes: Axis Value Plunge Azimuth T 7.16e+23 69 323 N 0.00e+00 19 169 P -7.16e+23 9 76 Moment Tensor: (dyne-cm) Component Value Mxx 1.53e+22 Mxy -2.08e+23 Mxz 1.63e+23 Myy -6.26e+23 Myz -2.46e+23 Mzz 6.11e+23 #########----- ###############------- -##################--------- --###################--------- ---#####################---------- ----#####################----------- ----#######################----------- -----########## ##########--------- -----########## T ##########--------- P -------######### ###########-------- - -------#######################------------ --------######################------------ --------#####################------------- --------####################------------ ---------###################------------ ----------################------------ ----------###############----------- -----------############----------- ------------########---------- --------------####---------- --------------######## --------###### Global CMT Convention Moment Tensor: R T P 6.11e+23 1.63e+23 2.46e+23 1.63e+23 1.53e+22 2.08e+23 2.46e+23 2.08e+23 -6.26e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20231028034410/index.html |
STK = 145 DIP = 40 RAKE = 60 MW = 5.17 HS = 4.0
The NDK file is 20231028034410.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2023/10/28 03:44:10:0 59.00 -136.55 5.9 5.3 Alaska Stations used: AK.BAGL AK.BAL AK.BARK AK.BARN AK.BERG AK.BESE AK.BMR AK.CHX AK.CRQ AK.DOT AK.ISLE AK.JIS AK.KHIT AK.KIAG AK.LOGN AK.M27K AK.MCAR AK.MESA AK.PAX AK.PIN AK.PNL AK.PS12 AK.PTPK AK.R32K AK.RKAV AK.S31K AK.S32K AK.SAMH AK.TGL AK.U33K AK.V35K AK.VRDI AK.WAX AT.CRAG AT.MENT AT.SIT AT.SKAG AV.EDCR AV.EDES AV.EDSO AV.N25K CN.ATLI CN.BRWY CN.DAWY CN.HYT CN.PLBC CN.RUBB CN.WHY CN.YUK3 CN.YUK4 CN.YUK6 CN.YUK7 CN.YUK8 EO.KLRS NY.MAYO NY.MMPY NY.WTLY US.WRAK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 7.16e+23 dyne-cm Mw = 5.17 Z = 4 km Plane Strike Dip Rake NP1 2 56 113 NP2 145 40 60 Principal Axes: Axis Value Plunge Azimuth T 7.16e+23 69 323 N 0.00e+00 19 169 P -7.16e+23 9 76 Moment Tensor: (dyne-cm) Component Value Mxx 1.53e+22 Mxy -2.08e+23 Mxz 1.63e+23 Myy -6.26e+23 Myz -2.46e+23 Mzz 6.11e+23 #########----- ###############------- -##################--------- --###################--------- ---#####################---------- ----#####################----------- ----#######################----------- -----########## ##########--------- -----########## T ##########--------- P -------######### ###########-------- - -------#######################------------ --------######################------------ --------#####################------------- --------####################------------ ---------###################------------ ----------################------------ ----------###############----------- -----------############----------- ------------########---------- --------------####---------- --------------######## --------###### Global CMT Convention Moment Tensor: R T P 6.11e+23 1.63e+23 2.46e+23 1.63e+23 1.53e+22 2.08e+23 2.46e+23 2.08e+23 -6.26e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20231028034410/index.html |
W-phase Moment Tensor (Mww) Moment 1.135e+17 N-m Magnitude 5.30 Mww Depth 11.5 km Percent DC 70% Half Duration 1.17 s Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 337 59 85 NP2 166 31 98 Principal Axes Axis Value Plunge Azimuth T 1.032e+17 N-m 75 234 N 0.184e+17 N-m 4 340 P -1.216e+17 N-m 14 71 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 135 30 30 5.17 0.5424 WVFGRD96 2.0 135 40 40 5.13 0.5795 WVFGRD96 3.0 140 40 55 5.16 0.5985 WVFGRD96 4.0 145 40 60 5.17 0.5986 WVFGRD96 5.0 150 40 70 5.18 0.5770 WVFGRD96 6.0 150 40 70 5.17 0.5386 WVFGRD96 7.0 120 60 10 5.06 0.5118 WVFGRD96 8.0 290 60 -25 5.08 0.5167 WVFGRD96 9.0 290 60 -30 5.09 0.5263 WVFGRD96 10.0 290 60 -30 5.11 0.5322 WVFGRD96 11.0 290 60 -30 5.11 0.5378 WVFGRD96 12.0 290 60 -25 5.11 0.5399 WVFGRD96 13.0 290 60 -25 5.11 0.5391 WVFGRD96 14.0 290 65 -25 5.12 0.5380 WVFGRD96 15.0 290 65 -25 5.13 0.5361 WVFGRD96 16.0 290 65 -25 5.13 0.5327 WVFGRD96 17.0 290 65 -20 5.13 0.5283 WVFGRD96 18.0 290 65 -20 5.14 0.5234 WVFGRD96 19.0 290 65 -20 5.14 0.5179 WVFGRD96 20.0 290 65 -20 5.16 0.5109 WVFGRD96 21.0 290 65 -20 5.16 0.5035 WVFGRD96 22.0 290 65 -20 5.16 0.4957 WVFGRD96 23.0 290 65 -20 5.17 0.4874 WVFGRD96 24.0 290 65 -20 5.17 0.4787 WVFGRD96 25.0 290 65 -20 5.17 0.4700 WVFGRD96 26.0 290 65 -20 5.18 0.4612 WVFGRD96 27.0 110 65 -10 5.20 0.4497 WVFGRD96 28.0 110 70 -10 5.20 0.4429 WVFGRD96 29.0 110 70 -10 5.21 0.4368
The best solution is
WVFGRD96 4.0 145 40 60 5.17 0.5986
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00