Location

Location ANSS

The ANSS event ID is ak023dttcwm3 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak023dttcwm3/executive.

2023/10/28 01:00:04 63.485 -150.100 137.6 4 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2023/10/28 01:00:04:0  63.49 -150.10 137.6 4.0 Alaska
 
 Stations used:
   AK.BPAW AK.CAST AK.CCB AK.CUT AK.DHY AK.GHO AK.H24K AK.HDA 
   AK.I23K AK.J20K AK.K20K AK.KNK AK.L22K AK.MCK AK.MLY 
   AK.NEA2 AK.PAX AK.POKR AK.PPLA AK.SAW AK.SCM AK.WAT6 AK.WRH 
   AT.PMR IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.30e+22 dyne-cm
  Mw = 4.01 
  Z  = 134 km
  Plane   Strike  Dip  Rake
   NP1       35    80    70
   NP2      279    22   153
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.30e+22     51     282
    N   0.00e+00     20      39
    P  -1.30e+22     32     142

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.50e+21
       Mxy     3.47e+21
       Mxz     5.97e+21
       Myy     1.31e+21
       Myz    -9.87e+21
       Mzz     4.19e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              -------############-------##           
             ----####################--####          
           ---########################--#####        
          --#########################-----####       
         -##########################--------###      
        -##########################----------###     
        #########   ##############------------##     
       ########## T #############--------------##    
       ##########   ############----------------#    
       #######################------------------#    
       ######################-------------------#    
        ####################--------------------     
        ##################----------------------     
         ################----------------------      
          #############-------------   -------       
           ###########-------------- P ------        
             #######----------------   ----          
              ####------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.19e+21   5.97e+21   9.87e+21 
  5.97e+21  -5.50e+21  -3.47e+21 
  9.87e+21  -3.47e+21   1.31e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20231028010004/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 35
      DIP = 80
     RAKE = 70
       MW = 4.01
       HS = 134.0

The NDK file is 20231028010004.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   250    35   -95   3.12 0.1753
WVFGRD96    4.0   295    40   -20   3.14 0.1973
WVFGRD96    6.0   295    45   -20   3.18 0.2292
WVFGRD96    8.0   290    45   -30   3.29 0.2614
WVFGRD96   10.0   295    50   -20   3.32 0.2771
WVFGRD96   12.0   305    60    20   3.35 0.2879
WVFGRD96   14.0   305    60    15   3.38 0.2919
WVFGRD96   16.0   305    55    15   3.42 0.2914
WVFGRD96   18.0   305    55    10   3.44 0.2859
WVFGRD96   20.0   300    50    -5   3.46 0.2787
WVFGRD96   22.0   300    50    -5   3.49 0.2681
WVFGRD96   24.0   210    80    45   3.54 0.2688
WVFGRD96   26.0   210    80    50   3.56 0.2688
WVFGRD96   28.0   210    80    50   3.58 0.2672
WVFGRD96   30.0   210    80    50   3.60 0.2612
WVFGRD96   32.0   210    80    45   3.60 0.2518
WVFGRD96   34.0   210    85    50   3.62 0.2413
WVFGRD96   36.0   210    80    45   3.62 0.2323
WVFGRD96   38.0   210    75    45   3.63 0.2284
WVFGRD96   40.0   210    75    50   3.72 0.2331
WVFGRD96   42.0   210    70    50   3.74 0.2313
WVFGRD96   44.0   210    70    45   3.75 0.2266
WVFGRD96   46.0   210    70    45   3.77 0.2232
WVFGRD96   48.0   210    70    45   3.78 0.2201
WVFGRD96   50.0   210    70    45   3.79 0.2163
WVFGRD96   52.0    30    65    20   3.79 0.2174
WVFGRD96   54.0    30    75    30   3.80 0.2258
WVFGRD96   56.0    30    80    35   3.82 0.2396
WVFGRD96   58.0    30    80    35   3.83 0.2540
WVFGRD96   60.0    30    80    35   3.84 0.2670
WVFGRD96   62.0    30    80    40   3.86 0.2799
WVFGRD96   64.0    30    70    35   3.87 0.2942
WVFGRD96   66.0    30    70    35   3.88 0.3134
WVFGRD96   68.0    30    70    35   3.89 0.3302
WVFGRD96   70.0    30    70    45   3.90 0.3516
WVFGRD96   72.0    25    75    50   3.92 0.3742
WVFGRD96   74.0    30    75    50   3.93 0.3997
WVFGRD96   76.0    30    75    55   3.94 0.4292
WVFGRD96   78.0    30    75    55   3.95 0.4577
WVFGRD96   80.0    30    75    55   3.96 0.4822
WVFGRD96   82.0    30    80    55   3.97 0.5024
WVFGRD96   84.0    30    80    55   3.97 0.5173
WVFGRD96   86.0    30    80    55   3.97 0.5303
WVFGRD96   88.0    30    80    55   3.98 0.5399
WVFGRD96   90.0    30    80    65   3.99 0.5497
WVFGRD96   92.0    30    80    65   3.99 0.5612
WVFGRD96   94.0    30    80    65   3.99 0.5712
WVFGRD96   96.0    30    80    65   3.99 0.5797
WVFGRD96   98.0    30    80    65   4.00 0.5881
WVFGRD96  100.0    30    80    65   4.00 0.5956
WVFGRD96  102.0    30    80    65   4.00 0.6024
WVFGRD96  104.0    35    80    65   4.00 0.6078
WVFGRD96  106.0    30    80    65   4.00 0.6122
WVFGRD96  108.0    35    80    65   4.00 0.6180
WVFGRD96  110.0    30    80    65   4.00 0.6215
WVFGRD96  112.0    35    80    70   4.00 0.6263
WVFGRD96  114.0    35    80    70   4.00 0.6298
WVFGRD96  116.0    35    80    70   4.00 0.6319
WVFGRD96  118.0    35    80    70   4.00 0.6355
WVFGRD96  120.0    35    80    70   4.01 0.6373
WVFGRD96  122.0    35    80    70   4.01 0.6395
WVFGRD96  124.0    35    80    70   4.01 0.6405
WVFGRD96  126.0    35    80    70   4.01 0.6412
WVFGRD96  128.0    35    80    70   4.01 0.6423
WVFGRD96  130.0    35    80    70   4.01 0.6429
WVFGRD96  132.0    35    80    70   4.01 0.6427
WVFGRD96  134.0    35    80    70   4.01 0.6433
WVFGRD96  136.0    35    80    70   4.01 0.6428
WVFGRD96  138.0    35    80    70   4.01 0.6421
WVFGRD96  140.0    35    80    70   4.01 0.6406
WVFGRD96  142.0    35    80    70   4.01 0.6398
WVFGRD96  144.0    35    80    70   4.01 0.6383
WVFGRD96  146.0    35    80    70   4.01 0.6368
WVFGRD96  148.0    35    80    70   4.01 0.6349

The best solution is

WVFGRD96  134.0    35    80    70   4.01 0.6433

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Tue Apr 23 04:35:32 AM CDT 2024