The ANSS event ID is ak023dttcwm3 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak023dttcwm3/executive.
2023/10/28 01:00:04 63.485 -150.100 137.6 4 Alaska
USGS/SLU Moment Tensor Solution ENS 2023/10/28 01:00:04:0 63.49 -150.10 137.6 4.0 Alaska Stations used: AK.BPAW AK.CAST AK.CCB AK.CUT AK.DHY AK.GHO AK.H24K AK.HDA AK.I23K AK.J20K AK.K20K AK.KNK AK.L22K AK.MCK AK.MLY AK.NEA2 AK.PAX AK.POKR AK.PPLA AK.SAW AK.SCM AK.WAT6 AK.WRH AT.PMR IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.30e+22 dyne-cm Mw = 4.01 Z = 134 km Plane Strike Dip Rake NP1 35 80 70 NP2 279 22 153 Principal Axes: Axis Value Plunge Azimuth T 1.30e+22 51 282 N 0.00e+00 20 39 P -1.30e+22 32 142 Moment Tensor: (dyne-cm) Component Value Mxx -5.50e+21 Mxy 3.47e+21 Mxz 5.97e+21 Myy 1.31e+21 Myz -9.87e+21 Mzz 4.19e+21 -------------- ---------------------- -------############-------## ----####################--#### ---########################--##### --#########################-----#### -##########################--------### -##########################----------### ######### ##############------------## ########## T #############--------------## ########## ############----------------# #######################------------------# ######################-------------------# ####################-------------------- ##################---------------------- ################---------------------- #############------------- ------- ###########-------------- P ------ #######---------------- ---- ####------------------------ ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 4.19e+21 5.97e+21 9.87e+21 5.97e+21 -5.50e+21 -3.47e+21 9.87e+21 -3.47e+21 1.31e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20231028010004/index.html |
STK = 35 DIP = 80 RAKE = 70 MW = 4.01 HS = 134.0
The NDK file is 20231028010004.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 250 35 -95 3.12 0.1753 WVFGRD96 4.0 295 40 -20 3.14 0.1973 WVFGRD96 6.0 295 45 -20 3.18 0.2292 WVFGRD96 8.0 290 45 -30 3.29 0.2614 WVFGRD96 10.0 295 50 -20 3.32 0.2771 WVFGRD96 12.0 305 60 20 3.35 0.2879 WVFGRD96 14.0 305 60 15 3.38 0.2919 WVFGRD96 16.0 305 55 15 3.42 0.2914 WVFGRD96 18.0 305 55 10 3.44 0.2859 WVFGRD96 20.0 300 50 -5 3.46 0.2787 WVFGRD96 22.0 300 50 -5 3.49 0.2681 WVFGRD96 24.0 210 80 45 3.54 0.2688 WVFGRD96 26.0 210 80 50 3.56 0.2688 WVFGRD96 28.0 210 80 50 3.58 0.2672 WVFGRD96 30.0 210 80 50 3.60 0.2612 WVFGRD96 32.0 210 80 45 3.60 0.2518 WVFGRD96 34.0 210 85 50 3.62 0.2413 WVFGRD96 36.0 210 80 45 3.62 0.2323 WVFGRD96 38.0 210 75 45 3.63 0.2284 WVFGRD96 40.0 210 75 50 3.72 0.2331 WVFGRD96 42.0 210 70 50 3.74 0.2313 WVFGRD96 44.0 210 70 45 3.75 0.2266 WVFGRD96 46.0 210 70 45 3.77 0.2232 WVFGRD96 48.0 210 70 45 3.78 0.2201 WVFGRD96 50.0 210 70 45 3.79 0.2163 WVFGRD96 52.0 30 65 20 3.79 0.2174 WVFGRD96 54.0 30 75 30 3.80 0.2258 WVFGRD96 56.0 30 80 35 3.82 0.2396 WVFGRD96 58.0 30 80 35 3.83 0.2540 WVFGRD96 60.0 30 80 35 3.84 0.2670 WVFGRD96 62.0 30 80 40 3.86 0.2799 WVFGRD96 64.0 30 70 35 3.87 0.2942 WVFGRD96 66.0 30 70 35 3.88 0.3134 WVFGRD96 68.0 30 70 35 3.89 0.3302 WVFGRD96 70.0 30 70 45 3.90 0.3516 WVFGRD96 72.0 25 75 50 3.92 0.3742 WVFGRD96 74.0 30 75 50 3.93 0.3997 WVFGRD96 76.0 30 75 55 3.94 0.4292 WVFGRD96 78.0 30 75 55 3.95 0.4577 WVFGRD96 80.0 30 75 55 3.96 0.4822 WVFGRD96 82.0 30 80 55 3.97 0.5024 WVFGRD96 84.0 30 80 55 3.97 0.5173 WVFGRD96 86.0 30 80 55 3.97 0.5303 WVFGRD96 88.0 30 80 55 3.98 0.5399 WVFGRD96 90.0 30 80 65 3.99 0.5497 WVFGRD96 92.0 30 80 65 3.99 0.5612 WVFGRD96 94.0 30 80 65 3.99 0.5712 WVFGRD96 96.0 30 80 65 3.99 0.5797 WVFGRD96 98.0 30 80 65 4.00 0.5881 WVFGRD96 100.0 30 80 65 4.00 0.5956 WVFGRD96 102.0 30 80 65 4.00 0.6024 WVFGRD96 104.0 35 80 65 4.00 0.6078 WVFGRD96 106.0 30 80 65 4.00 0.6122 WVFGRD96 108.0 35 80 65 4.00 0.6180 WVFGRD96 110.0 30 80 65 4.00 0.6215 WVFGRD96 112.0 35 80 70 4.00 0.6263 WVFGRD96 114.0 35 80 70 4.00 0.6298 WVFGRD96 116.0 35 80 70 4.00 0.6319 WVFGRD96 118.0 35 80 70 4.00 0.6355 WVFGRD96 120.0 35 80 70 4.01 0.6373 WVFGRD96 122.0 35 80 70 4.01 0.6395 WVFGRD96 124.0 35 80 70 4.01 0.6405 WVFGRD96 126.0 35 80 70 4.01 0.6412 WVFGRD96 128.0 35 80 70 4.01 0.6423 WVFGRD96 130.0 35 80 70 4.01 0.6429 WVFGRD96 132.0 35 80 70 4.01 0.6427 WVFGRD96 134.0 35 80 70 4.01 0.6433 WVFGRD96 136.0 35 80 70 4.01 0.6428 WVFGRD96 138.0 35 80 70 4.01 0.6421 WVFGRD96 140.0 35 80 70 4.01 0.6406 WVFGRD96 142.0 35 80 70 4.01 0.6398 WVFGRD96 144.0 35 80 70 4.01 0.6383 WVFGRD96 146.0 35 80 70 4.01 0.6368 WVFGRD96 148.0 35 80 70 4.01 0.6349
The best solution is
WVFGRD96 134.0 35 80 70 4.01 0.6433
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00