The ANSS event ID is us6000lhe2 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us6000lhe2/executive.
2023/10/22 20:13:59 59.336 -152.937 81.1 3.8 Alaska
USGS/SLU Moment Tensor Solution ENS 2023/10/22 20:13:59:0 59.34 -152.94 81.1 3.8 Alaska Stations used: AK.BMR AK.BRLK AK.BRSE AK.HOM AK.M19K AK.N18K AK.N19K AK.O18K AK.O19K AK.O20K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 1.14e+22 dyne-cm Mw = 3.97 Z = 86 km Plane Strike Dip Rake NP1 70 70 45 NP2 321 48 153 Principal Axes: Axis Value Plunge Azimuth T 1.14e+22 45 295 N 0.00e+00 42 89 P -1.14e+22 13 191 Moment Tensor: (dyne-cm) Component Value Mxx -9.40e+21 Mxy -4.12e+21 Mxz 4.84e+21 Myy 4.24e+21 Myz -4.68e+21 Mzz 5.16e+21 -------------- ---------------------- #########------------------- ##############---------------- ###################--------------- #######################------------- ##########################------------ ######## #################-----------# ######## T ###################-------### ######### ####################----###### #################################-######## ###############################---######## ############################------######## ######################------------###### ################------------------###### ---------------------------------##### --------------------------------#### -------------------------------### -----------------------------# --------- ---------------# ------ P ------------- -- --------- Global CMT Convention Moment Tensor: R T P 5.16e+21 4.84e+21 4.68e+21 4.84e+21 -9.40e+21 4.12e+21 4.68e+21 4.12e+21 4.24e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20231022201359/index.html |
STK = 70 DIP = 70 RAKE = 45 MW = 3.97 HS = 86.0
The NDK file is 20231022201359.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 250 65 30 3.28 0.4355 WVFGRD96 4.0 245 55 5 3.35 0.4926 WVFGRD96 6.0 240 70 -20 3.38 0.5218 WVFGRD96 8.0 240 65 -20 3.43 0.5351 WVFGRD96 10.0 240 70 -20 3.45 0.5407 WVFGRD96 12.0 60 70 -30 3.48 0.5468 WVFGRD96 14.0 60 70 -30 3.51 0.5527 WVFGRD96 16.0 60 70 -25 3.52 0.5585 WVFGRD96 18.0 60 70 -25 3.54 0.5639 WVFGRD96 20.0 60 70 -20 3.56 0.5692 WVFGRD96 22.0 60 70 -20 3.58 0.5735 WVFGRD96 24.0 60 70 -20 3.60 0.5771 WVFGRD96 26.0 60 70 -15 3.62 0.5798 WVFGRD96 28.0 60 70 -15 3.64 0.5824 WVFGRD96 30.0 60 65 -10 3.66 0.5886 WVFGRD96 32.0 60 65 -10 3.68 0.5981 WVFGRD96 34.0 60 65 -10 3.70 0.6084 WVFGRD96 36.0 60 70 -10 3.72 0.6199 WVFGRD96 38.0 60 70 -10 3.75 0.6288 WVFGRD96 40.0 55 65 5 3.80 0.6375 WVFGRD96 42.0 55 65 5 3.83 0.6412 WVFGRD96 44.0 55 65 5 3.84 0.6422 WVFGRD96 46.0 55 65 5 3.86 0.6429 WVFGRD96 48.0 55 65 10 3.87 0.6459 WVFGRD96 50.0 55 65 10 3.89 0.6505 WVFGRD96 52.0 60 65 20 3.90 0.6559 WVFGRD96 54.0 60 65 20 3.91 0.6628 WVFGRD96 56.0 60 65 20 3.92 0.6688 WVFGRD96 58.0 60 65 20 3.92 0.6745 WVFGRD96 60.0 60 65 20 3.93 0.6801 WVFGRD96 62.0 60 65 20 3.94 0.6831 WVFGRD96 64.0 60 65 20 3.94 0.6861 WVFGRD96 66.0 65 65 30 3.95 0.6901 WVFGRD96 68.0 65 65 30 3.95 0.6930 WVFGRD96 70.0 65 65 30 3.96 0.6957 WVFGRD96 72.0 65 65 30 3.96 0.6968 WVFGRD96 74.0 65 65 30 3.96 0.6987 WVFGRD96 76.0 65 65 30 3.97 0.6991 WVFGRD96 78.0 65 70 35 3.96 0.7001 WVFGRD96 80.0 65 70 35 3.96 0.7013 WVFGRD96 82.0 65 70 40 3.97 0.7015 WVFGRD96 84.0 70 70 45 3.97 0.7012 WVFGRD96 86.0 70 70 45 3.97 0.7016 WVFGRD96 88.0 70 70 45 3.98 0.7013 WVFGRD96 90.0 70 70 45 3.98 0.7005 WVFGRD96 92.0 70 70 45 3.98 0.6985 WVFGRD96 94.0 70 70 45 3.98 0.6957 WVFGRD96 96.0 70 75 50 3.98 0.6961 WVFGRD96 98.0 70 75 50 3.98 0.6961 WVFGRD96 100.0 70 75 50 3.98 0.6955 WVFGRD96 102.0 70 75 50 3.98 0.6936 WVFGRD96 104.0 70 75 50 3.98 0.6915 WVFGRD96 106.0 70 75 50 3.98 0.6914 WVFGRD96 108.0 70 75 50 3.99 0.6897 WVFGRD96 110.0 70 75 50 3.99 0.6867 WVFGRD96 112.0 70 75 50 3.99 0.6859 WVFGRD96 114.0 70 80 55 3.99 0.6849 WVFGRD96 116.0 70 80 55 3.99 0.6825 WVFGRD96 118.0 70 80 55 3.99 0.6815 WVFGRD96 120.0 70 80 55 3.99 0.6805 WVFGRD96 122.0 70 80 55 3.99 0.6773 WVFGRD96 124.0 70 80 55 3.99 0.6773 WVFGRD96 126.0 75 80 60 4.00 0.6758 WVFGRD96 128.0 75 80 60 4.00 0.6735 WVFGRD96 130.0 75 80 60 4.00 0.6734 WVFGRD96 132.0 75 80 60 4.01 0.6703 WVFGRD96 134.0 75 80 60 4.01 0.6693 WVFGRD96 136.0 75 85 65 4.02 0.6678 WVFGRD96 138.0 75 85 65 4.02 0.6664 WVFGRD96 140.0 75 85 65 4.02 0.6663 WVFGRD96 142.0 75 85 65 4.02 0.6633 WVFGRD96 144.0 75 85 65 4.02 0.6632 WVFGRD96 146.0 75 85 65 4.02 0.6599 WVFGRD96 148.0 70 85 55 4.01 0.6482
The best solution is
WVFGRD96 86.0 70 70 45 3.97 0.7016
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00