The ANSS event ID is ak023btef8mo and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak023btef8mo/executive.
2023/09/14 22:35:05 59.314 -153.501 103.7 4.4 Alaska
USGS/SLU Moment Tensor Solution ENS 2023/09/14 22:35:05:0 59.31 -153.50 103.7 4.4 Alaska Stations used: AK.BRLK AK.CNP AK.HOM AK.M19K AK.M20K AK.N18K AK.N19K AK.O18K AK.P17K AK.Q19K AK.SLK AV.ACH AV.PLK3 AV.SPCP II.KDAK Filtering commands used: cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 3.55e+22 dyne-cm Mw = 4.30 Z = 106 km Plane Strike Dip Rake NP1 60 80 85 NP2 267 11 116 Principal Axes: Axis Value Plunge Azimuth T 3.55e+22 55 324 N 0.00e+00 5 61 P -3.55e+22 35 154 Moment Tensor: (dyne-cm) Component Value Mxx -1.17e+22 Mxy 3.71e+21 Mxz 2.85e+22 Myy -3.85e+20 Myz -1.71e+22 Mzz 1.21e+22 -------------- ----##############---- ---######################--- --##########################-- --##############################-- -##################################- -############ ###################--# -############# T #################-----# ############## ###############-------- -#############################-----------# ###########################--------------- ########################------------------ #####################--------------------- #################----------------------- #############--------------------------- ########------------------------------ #--------------------- ----------- --------------------- P ---------- ------------------- -------- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.21e+22 2.85e+22 1.71e+22 2.85e+22 -1.17e+22 -3.71e+21 1.71e+22 -3.71e+21 -3.85e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230914223505/index.html |
STK = 60 DIP = 80 RAKE = 85 MW = 4.30 HS = 106.0
The NDK file is 20230914223505.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 150 90 0 3.27 0.2391 WVFGRD96 4.0 155 75 20 3.38 0.2658 WVFGRD96 6.0 150 70 -15 3.44 0.2874 WVFGRD96 8.0 150 65 -15 3.51 0.3087 WVFGRD96 10.0 160 60 25 3.56 0.3197 WVFGRD96 12.0 155 65 20 3.59 0.3297 WVFGRD96 14.0 155 65 20 3.62 0.3344 WVFGRD96 16.0 60 75 -15 3.65 0.3475 WVFGRD96 18.0 60 75 -10 3.68 0.3606 WVFGRD96 20.0 60 75 -10 3.71 0.3735 WVFGRD96 22.0 60 75 -15 3.74 0.3863 WVFGRD96 24.0 60 75 -15 3.76 0.3977 WVFGRD96 26.0 60 75 -15 3.78 0.4073 WVFGRD96 28.0 60 75 -15 3.80 0.4183 WVFGRD96 30.0 60 80 -15 3.82 0.4276 WVFGRD96 32.0 60 80 -15 3.84 0.4357 WVFGRD96 34.0 60 80 -15 3.86 0.4404 WVFGRD96 36.0 60 80 -15 3.89 0.4470 WVFGRD96 38.0 60 85 -10 3.92 0.4523 WVFGRD96 40.0 245 75 20 3.98 0.4648 WVFGRD96 42.0 245 75 20 4.00 0.4700 WVFGRD96 44.0 245 75 20 4.02 0.4724 WVFGRD96 46.0 245 75 20 4.03 0.4729 WVFGRD96 48.0 245 75 15 4.05 0.4734 WVFGRD96 50.0 65 85 35 4.08 0.4854 WVFGRD96 52.0 65 85 35 4.09 0.4958 WVFGRD96 54.0 65 85 35 4.10 0.5061 WVFGRD96 56.0 65 85 40 4.11 0.5174 WVFGRD96 58.0 65 85 40 4.12 0.5266 WVFGRD96 60.0 65 80 45 4.13 0.5359 WVFGRD96 62.0 65 80 45 4.14 0.5475 WVFGRD96 64.0 70 80 50 4.15 0.5547 WVFGRD96 66.0 75 75 60 4.17 0.5685 WVFGRD96 68.0 75 75 60 4.18 0.5790 WVFGRD96 70.0 75 75 60 4.18 0.5908 WVFGRD96 72.0 75 75 65 4.19 0.5985 WVFGRD96 74.0 75 75 65 4.20 0.6056 WVFGRD96 76.0 75 75 65 4.20 0.6128 WVFGRD96 78.0 75 75 65 4.20 0.6183 WVFGRD96 80.0 70 75 70 4.22 0.6219 WVFGRD96 82.0 70 75 75 4.24 0.6283 WVFGRD96 84.0 70 75 75 4.24 0.6354 WVFGRD96 86.0 70 75 75 4.24 0.6407 WVFGRD96 88.0 65 80 80 4.26 0.6481 WVFGRD96 90.0 65 80 80 4.26 0.6563 WVFGRD96 92.0 65 80 80 4.26 0.6631 WVFGRD96 94.0 65 80 85 4.28 0.6690 WVFGRD96 96.0 65 80 85 4.28 0.6743 WVFGRD96 98.0 65 80 85 4.28 0.6792 WVFGRD96 100.0 60 80 85 4.30 0.6838 WVFGRD96 102.0 60 80 85 4.30 0.6871 WVFGRD96 104.0 60 80 85 4.30 0.6894 WVFGRD96 106.0 60 80 85 4.30 0.6900 WVFGRD96 108.0 60 80 85 4.30 0.6897 WVFGRD96 110.0 60 85 90 4.30 0.6898 WVFGRD96 112.0 60 85 90 4.30 0.6896 WVFGRD96 114.0 60 85 90 4.30 0.6884 WVFGRD96 116.0 60 85 90 4.30 0.6879 WVFGRD96 118.0 60 85 90 4.30 0.6864 WVFGRD96 120.0 60 85 90 4.30 0.6836 WVFGRD96 122.0 130 -5 -20 4.28 0.6695 WVFGRD96 124.0 60 85 90 4.30 0.6739 WVFGRD96 126.0 80 -5 -70 4.29 0.6716 WVFGRD96 128.0 80 -5 -70 4.29 0.6681 WVFGRD96 130.0 90 -5 -60 4.29 0.6627 WVFGRD96 132.0 80 -5 -70 4.29 0.6561 WVFGRD96 134.0 90 -5 -60 4.28 0.6517 WVFGRD96 136.0 95 -5 -60 4.27 0.6478 WVFGRD96 138.0 80 -5 -75 4.28 0.6422 WVFGRD96 140.0 90 -5 -65 4.27 0.6367 WVFGRD96 142.0 235 5 80 4.28 0.6320 WVFGRD96 144.0 85 -5 -70 4.27 0.6284 WVFGRD96 146.0 85 -5 -70 4.27 0.6211 WVFGRD96 148.0 245 5 90 4.27 0.6159
The best solution is
WVFGRD96 106.0 60 80 85 4.30 0.6900
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00