Location

Location ANSS

The ANSS event ID is ak023a8xq5yn and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak023a8xq5yn/executive.

2023/08/11 08:20:08 62.886 -150.543 90.9 3.7 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2023/08/11 08:20:08:0  62.89 -150.54  90.9 3.7 Alaska
 
 Stations used:
   AK.BPAW AK.CAST AK.CUT AK.DHY AK.GHO AK.J20K AK.K24K AK.KNK 
   AK.L20K AK.L22K AK.M20K AK.MCK AK.MLY AK.PPLA AK.SAW AK.SCM 
   AK.SKN AK.WAT6 AK.WRH 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 6.76e+21 dyne-cm
  Mw = 3.82 
  Z  = 94 km
  Plane   Strike  Dip  Rake
   NP1      242    83   -135
   NP2      145    45   -10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.76e+21     24       5
    N   0.00e+00     44     249
    P  -6.76e+21     36     114

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.81e+21
       Mxy     2.16e+21
       Mxz     3.86e+21
       Myy    -3.64e+21
       Myz    -2.70e+21
       Mzz    -1.17e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ###########   ########              
              -############# T ###########           
             --#############   ############          
           ---###############################        
          ----################################       
         -----############################-----      
        ------#######################-----------     
        ------###################---------------     
       --------##############--------------------    
       --------###########-----------------------    
       ---------#######--------------------------    
       ----------##--------------------   -------    
        ---------#--------------------- P ------     
        ------#####--------------------   ------     
         --#########---------------------------      
          ############------------------------       
           #############---------------------        
             ##############----------------          
              ################------------           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.17e+21   3.86e+21   2.70e+21 
  3.86e+21   4.81e+21  -2.16e+21 
  2.70e+21  -2.16e+21  -3.64e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230811082008/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 145
      DIP = 45
     RAKE = -10
       MW = 3.82
       HS = 94.0

The NDK file is 20230811082008.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   235    35    70   2.96 0.1974
WVFGRD96    4.0    55    80   -50   3.02 0.2394
WVFGRD96    6.0    55    80   -45   3.06 0.2800
WVFGRD96    8.0    55    80   -45   3.15 0.3060
WVFGRD96   10.0    55    80   -40   3.18 0.3118
WVFGRD96   12.0   240    90    35   3.20 0.3044
WVFGRD96   14.0    70    70    25   3.27 0.3021
WVFGRD96   16.0    70    70    25   3.29 0.2947
WVFGRD96   18.0    70    70    25   3.31 0.2822
WVFGRD96   20.0    40    65    45   3.31 0.2686
WVFGRD96   22.0   350    50    35   3.38 0.2745
WVFGRD96   24.0   350    50    35   3.41 0.2888
WVFGRD96   26.0   350    55    35   3.44 0.3038
WVFGRD96   28.0   350    55    35   3.47 0.3181
WVFGRD96   30.0   345    60    25   3.49 0.3288
WVFGRD96   32.0   345    60    25   3.51 0.3404
WVFGRD96   34.0   330    85    30   3.51 0.3677
WVFGRD96   36.0   330    85    30   3.54 0.3927
WVFGRD96   38.0   330    90    25   3.56 0.4136
WVFGRD96   40.0   330    90    30   3.63 0.4392
WVFGRD96   42.0   145    75   -35   3.65 0.4453
WVFGRD96   44.0   145    70   -30   3.66 0.4539
WVFGRD96   46.0   145    70   -30   3.68 0.4635
WVFGRD96   48.0   145    70   -30   3.69 0.4749
WVFGRD96   50.0   145    65   -30   3.71 0.4876
WVFGRD96   52.0   145    65   -30   3.72 0.5015
WVFGRD96   54.0   145    60   -25   3.73 0.5165
WVFGRD96   56.0   145    60   -25   3.74 0.5308
WVFGRD96   58.0   145    55   -25   3.75 0.5469
WVFGRD96   60.0   145    55   -20   3.76 0.5624
WVFGRD96   62.0   145    55   -20   3.76 0.5780
WVFGRD96   64.0   145    50   -20   3.77 0.5910
WVFGRD96   66.0   145    50   -20   3.78 0.6059
WVFGRD96   68.0   145    50   -20   3.78 0.6167
WVFGRD96   70.0   145    50   -20   3.79 0.6254
WVFGRD96   72.0   145    45   -15   3.80 0.6369
WVFGRD96   74.0   145    45   -15   3.80 0.6440
WVFGRD96   76.0   145    45   -15   3.80 0.6526
WVFGRD96   78.0   145    45   -15   3.81 0.6575
WVFGRD96   80.0   145    45   -15   3.81 0.6619
WVFGRD96   82.0   145    45   -15   3.81 0.6650
WVFGRD96   84.0   145    45   -10   3.81 0.6669
WVFGRD96   86.0   145    45   -10   3.81 0.6694
WVFGRD96   88.0   145    45   -10   3.82 0.6703
WVFGRD96   90.0   145    45   -10   3.82 0.6709
WVFGRD96   92.0   145    45   -10   3.82 0.6720
WVFGRD96   94.0   145    45   -10   3.82 0.6720
WVFGRD96   96.0   145    45   -10   3.82 0.6719
WVFGRD96   98.0   145    45    -5   3.83 0.6709
WVFGRD96  100.0   145    45    -5   3.83 0.6697
WVFGRD96  102.0   145    45    -5   3.83 0.6665
WVFGRD96  104.0   145    45    -5   3.83 0.6667
WVFGRD96  106.0   145    45    -5   3.83 0.6640
WVFGRD96  108.0   145    45    -5   3.83 0.6620
WVFGRD96  110.0   145    45    -5   3.83 0.6578
WVFGRD96  112.0   145    45    -5   3.84 0.6557
WVFGRD96  114.0   145    45    -5   3.84 0.6520
WVFGRD96  116.0   145    45    -5   3.84 0.6478
WVFGRD96  118.0   145    40    -5   3.84 0.6463
WVFGRD96  120.0   145    40    -5   3.84 0.6425
WVFGRD96  122.0   145    40    -5   3.84 0.6374
WVFGRD96  124.0   145    40    -5   3.84 0.6362
WVFGRD96  126.0   145    40    -5   3.84 0.6303
WVFGRD96  128.0   145    40    -5   3.85 0.6288
WVFGRD96  130.0   145    45    -5   3.85 0.6253
WVFGRD96  132.0   150    45     5   3.86 0.6210
WVFGRD96  134.0   150    45     5   3.86 0.6197
WVFGRD96  136.0   150    45     5   3.86 0.6153
WVFGRD96  138.0   150    45     5   3.86 0.6146
WVFGRD96  140.0   150    45     5   3.86 0.6111
WVFGRD96  142.0   150    45     5   3.86 0.6057
WVFGRD96  144.0   150    45     5   3.86 0.6041
WVFGRD96  146.0   150    45     5   3.86 0.5994
WVFGRD96  148.0   150    45     5   3.87 0.5966

The best solution is

WVFGRD96   94.0   145    45   -10   3.82 0.6720

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Tue Apr 23 02:36:18 AM CDT 2024