The ANSS event ID is ak023a8xq5yn and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak023a8xq5yn/executive.
2023/08/11 08:20:08 62.886 -150.543 90.9 3.7 Alaska
USGS/SLU Moment Tensor Solution ENS 2023/08/11 08:20:08:0 62.89 -150.54 90.9 3.7 Alaska Stations used: AK.BPAW AK.CAST AK.CUT AK.DHY AK.GHO AK.J20K AK.K24K AK.KNK AK.L20K AK.L22K AK.M20K AK.MCK AK.MLY AK.PPLA AK.SAW AK.SCM AK.SKN AK.WAT6 AK.WRH Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 6.76e+21 dyne-cm Mw = 3.82 Z = 94 km Plane Strike Dip Rake NP1 242 83 -135 NP2 145 45 -10 Principal Axes: Axis Value Plunge Azimuth T 6.76e+21 24 5 N 0.00e+00 44 249 P -6.76e+21 36 114 Moment Tensor: (dyne-cm) Component Value Mxx 4.81e+21 Mxy 2.16e+21 Mxz 3.86e+21 Myy -3.64e+21 Myz -2.70e+21 Mzz -1.17e+21 ############## ########### ######## -############# T ########### --############# ############ ---############################### ----################################ -----############################----- ------#######################----------- ------###################--------------- --------##############-------------------- --------###########----------------------- ---------#######-------------------------- ----------##-------------------- ------- ---------#--------------------- P ------ ------#####-------------------- ------ --#########--------------------------- ############------------------------ #############--------------------- ##############---------------- ################------------ ###################### ############## Global CMT Convention Moment Tensor: R T P -1.17e+21 3.86e+21 2.70e+21 3.86e+21 4.81e+21 -2.16e+21 2.70e+21 -2.16e+21 -3.64e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230811082008/index.html |
STK = 145 DIP = 45 RAKE = -10 MW = 3.82 HS = 94.0
The NDK file is 20230811082008.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 235 35 70 2.96 0.1974 WVFGRD96 4.0 55 80 -50 3.02 0.2394 WVFGRD96 6.0 55 80 -45 3.06 0.2800 WVFGRD96 8.0 55 80 -45 3.15 0.3060 WVFGRD96 10.0 55 80 -40 3.18 0.3118 WVFGRD96 12.0 240 90 35 3.20 0.3044 WVFGRD96 14.0 70 70 25 3.27 0.3021 WVFGRD96 16.0 70 70 25 3.29 0.2947 WVFGRD96 18.0 70 70 25 3.31 0.2822 WVFGRD96 20.0 40 65 45 3.31 0.2686 WVFGRD96 22.0 350 50 35 3.38 0.2745 WVFGRD96 24.0 350 50 35 3.41 0.2888 WVFGRD96 26.0 350 55 35 3.44 0.3038 WVFGRD96 28.0 350 55 35 3.47 0.3181 WVFGRD96 30.0 345 60 25 3.49 0.3288 WVFGRD96 32.0 345 60 25 3.51 0.3404 WVFGRD96 34.0 330 85 30 3.51 0.3677 WVFGRD96 36.0 330 85 30 3.54 0.3927 WVFGRD96 38.0 330 90 25 3.56 0.4136 WVFGRD96 40.0 330 90 30 3.63 0.4392 WVFGRD96 42.0 145 75 -35 3.65 0.4453 WVFGRD96 44.0 145 70 -30 3.66 0.4539 WVFGRD96 46.0 145 70 -30 3.68 0.4635 WVFGRD96 48.0 145 70 -30 3.69 0.4749 WVFGRD96 50.0 145 65 -30 3.71 0.4876 WVFGRD96 52.0 145 65 -30 3.72 0.5015 WVFGRD96 54.0 145 60 -25 3.73 0.5165 WVFGRD96 56.0 145 60 -25 3.74 0.5308 WVFGRD96 58.0 145 55 -25 3.75 0.5469 WVFGRD96 60.0 145 55 -20 3.76 0.5624 WVFGRD96 62.0 145 55 -20 3.76 0.5780 WVFGRD96 64.0 145 50 -20 3.77 0.5910 WVFGRD96 66.0 145 50 -20 3.78 0.6059 WVFGRD96 68.0 145 50 -20 3.78 0.6167 WVFGRD96 70.0 145 50 -20 3.79 0.6254 WVFGRD96 72.0 145 45 -15 3.80 0.6369 WVFGRD96 74.0 145 45 -15 3.80 0.6440 WVFGRD96 76.0 145 45 -15 3.80 0.6526 WVFGRD96 78.0 145 45 -15 3.81 0.6575 WVFGRD96 80.0 145 45 -15 3.81 0.6619 WVFGRD96 82.0 145 45 -15 3.81 0.6650 WVFGRD96 84.0 145 45 -10 3.81 0.6669 WVFGRD96 86.0 145 45 -10 3.81 0.6694 WVFGRD96 88.0 145 45 -10 3.82 0.6703 WVFGRD96 90.0 145 45 -10 3.82 0.6709 WVFGRD96 92.0 145 45 -10 3.82 0.6720 WVFGRD96 94.0 145 45 -10 3.82 0.6720 WVFGRD96 96.0 145 45 -10 3.82 0.6719 WVFGRD96 98.0 145 45 -5 3.83 0.6709 WVFGRD96 100.0 145 45 -5 3.83 0.6697 WVFGRD96 102.0 145 45 -5 3.83 0.6665 WVFGRD96 104.0 145 45 -5 3.83 0.6667 WVFGRD96 106.0 145 45 -5 3.83 0.6640 WVFGRD96 108.0 145 45 -5 3.83 0.6620 WVFGRD96 110.0 145 45 -5 3.83 0.6578 WVFGRD96 112.0 145 45 -5 3.84 0.6557 WVFGRD96 114.0 145 45 -5 3.84 0.6520 WVFGRD96 116.0 145 45 -5 3.84 0.6478 WVFGRD96 118.0 145 40 -5 3.84 0.6463 WVFGRD96 120.0 145 40 -5 3.84 0.6425 WVFGRD96 122.0 145 40 -5 3.84 0.6374 WVFGRD96 124.0 145 40 -5 3.84 0.6362 WVFGRD96 126.0 145 40 -5 3.84 0.6303 WVFGRD96 128.0 145 40 -5 3.85 0.6288 WVFGRD96 130.0 145 45 -5 3.85 0.6253 WVFGRD96 132.0 150 45 5 3.86 0.6210 WVFGRD96 134.0 150 45 5 3.86 0.6197 WVFGRD96 136.0 150 45 5 3.86 0.6153 WVFGRD96 138.0 150 45 5 3.86 0.6146 WVFGRD96 140.0 150 45 5 3.86 0.6111 WVFGRD96 142.0 150 45 5 3.86 0.6057 WVFGRD96 144.0 150 45 5 3.86 0.6041 WVFGRD96 146.0 150 45 5 3.86 0.5994 WVFGRD96 148.0 150 45 5 3.87 0.5966
The best solution is
WVFGRD96 94.0 145 45 -10 3.82 0.6720
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00