Location

Location ANSS

The ANSS event ID is us6000kybs and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us6000kybs/executive.

2023/08/06 20:22:05 61.346 -139.974 3.0 4.8 Yukon, Canada

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2023/08/06 20:22:05:0  61.35 -139.97   3.0 4.8 Yukon, Canada
 
 Stations used:
   AK.BAL AK.BARK AK.BARN AK.BAT AK.BERG AK.BGLC AK.BMR 
   AK.BRLK AK.BRSE AK.CCB AK.CNP AK.CUT AK.CYK AK.DHY AK.DIV 
   AK.DOT AK.EYAK AK.FID AK.FIRE AK.FYU AK.GHO AK.GLB AK.GLI 
   AK.GOAT AK.GRIN AK.H24K AK.HARP AK.HDA AK.HIN AK.HOM 
   AK.I23K AK.I27K AK.ISLE AK.J25K AK.K24K AK.KAI AK.KHIT 
   AK.KIAG AK.KLU AK.KNK AK.L22K AK.LOGN AK.M23K AK.M27K 
   AK.MCAR AK.MCK AK.MDM 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 1.27e+23 dyne-cm
  Mw = 4.67 
  Z  = 11 km
  Plane   Strike  Dip  Rake
   NP1      270    60    50
   NP2      149    48   138
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.27e+23     55     127
    N   0.00e+00     34     293
    P  -1.27e+23      7      27

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -8.45e+22
       Mxy    -7.09e+22
       Mxz    -4.88e+22
       Myy    -1.69e+15
       Myz     4.09e+22
       Mzz     8.45e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ------------------ P -              
              ##-------------------   ----           
             ###---------------------------          
           ####------------------------------        
          #####-------------------------------       
         ######--------------------------------      
        #######----##################-----------     
        ######-###########################------     
       ###------##############################---    
       #--------################################-    
       ----------################################    
       -----------###############   #############    
        -----------############## T ############     
        ------------#############   ############     
         ------------##########################      
          -------------#######################       
           --------------####################        
             --------------################          
              ----------------############           
                 ------------------####              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  8.45e+22  -4.88e+22  -4.09e+22 
 -4.88e+22  -8.45e+22   7.09e+22 
 -4.09e+22   7.09e+22  -1.69e+15 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230806202205/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 270
      DIP = 60
     RAKE = 50
       MW = 4.67
       HS = 11.0

The NDK file is 20230806202205.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2023/08/06 20:22:05:0  61.35 -139.97   3.0 4.8 Yukon, Canada
 
 Stations used:
   AK.BAL AK.BARK AK.BARN AK.BAT AK.BERG AK.BGLC AK.BMR 
   AK.BRLK AK.BRSE AK.CCB AK.CNP AK.CUT AK.CYK AK.DHY AK.DIV 
   AK.DOT AK.EYAK AK.FID AK.FIRE AK.FYU AK.GHO AK.GLB AK.GLI 
   AK.GOAT AK.GRIN AK.H24K AK.HARP AK.HDA AK.HIN AK.HOM 
   AK.I23K AK.I27K AK.ISLE AK.J25K AK.K24K AK.KAI AK.KHIT 
   AK.KIAG AK.KLU AK.KNK AK.L22K AK.LOGN AK.M23K AK.M27K 
   AK.MCAR AK.MCK AK.MDM 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 1.27e+23 dyne-cm
  Mw = 4.67 
  Z  = 11 km
  Plane   Strike  Dip  Rake
   NP1      270    60    50
   NP2      149    48   138
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.27e+23     55     127
    N   0.00e+00     34     293
    P  -1.27e+23      7      27

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -8.45e+22
       Mxy    -7.09e+22
       Mxz    -4.88e+22
       Myy    -1.69e+15
       Myz     4.09e+22
       Mzz     8.45e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ------------------ P -              
              ##-------------------   ----           
             ###---------------------------          
           ####------------------------------        
          #####-------------------------------       
         ######--------------------------------      
        #######----##################-----------     
        ######-###########################------     
       ###------##############################---    
       #--------################################-    
       ----------################################    
       -----------###############   #############    
        -----------############## T ############     
        ------------#############   ############     
         ------------##########################      
          -------------#######################       
           --------------####################        
             --------------################          
              ----------------############           
                 ------------------####              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  8.45e+22  -4.88e+22  -4.09e+22 
 -4.88e+22  -8.45e+22   7.09e+22 
 -4.09e+22   7.09e+22  -1.69e+15 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230806202205/index.html
	
Regional Moment Tensor (Mwr)
Moment 1.851e+16 N-m
Magnitude 4.78 Mwr
Depth 9.0 km
Percent DC 83%
Half Duration -
Catalog US
Data Source US 3
Contributor US 3

Nodal Planes
Plane Strike Dip Rake
NP1 279 44 58
NP2 140 54 117

Principal Axes
Axis Value Plunge Azimuth
T 1.761e+16 N-m 68 109
N 0.167e+16 N-m 22 303
P -1.929e+16 N-m 5 211

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   190    50    70   4.33 0.2669
WVFGRD96    2.0   195    50    75   4.45 0.3266
WVFGRD96    3.0   345    90    55   4.49 0.3733
WVFGRD96    4.0   160    85   -50   4.48 0.4107
WVFGRD96    5.0   150    65   -50   4.51 0.4417
WVFGRD96    6.0   145    55   -50   4.55 0.4668
WVFGRD96    7.0   150    55   -45   4.56 0.4790
WVFGRD96    8.0    85    50    40   4.60 0.4826
WVFGRD96    9.0   275    55    60   4.66 0.5057
WVFGRD96   10.0   270    60    55   4.66 0.5169
WVFGRD96   11.0   270    60    50   4.67 0.5213
WVFGRD96   12.0   265    65    45   4.68 0.5211
WVFGRD96   13.0   265    65    40   4.68 0.5189
WVFGRD96   14.0   265    65    40   4.69 0.5135
WVFGRD96   15.0   265    65    35   4.70 0.5058
WVFGRD96   16.0   260    70    35   4.71 0.4978
WVFGRD96   17.0   260    70    35   4.72 0.4886
WVFGRD96   18.0   260    70    30   4.72 0.4781
WVFGRD96   19.0   260    70    30   4.73 0.4668
WVFGRD96   20.0   260    70    30   4.74 0.4544
WVFGRD96   21.0   260    70    30   4.75 0.4416
WVFGRD96   22.0   260    70    30   4.75 0.4281
WVFGRD96   23.0   260    70    30   4.76 0.4154
WVFGRD96   24.0   260    70    30   4.77 0.4030
WVFGRD96   25.0   255    70    25   4.76 0.3925
WVFGRD96   26.0    60    70   -35   4.78 0.3824
WVFGRD96   27.0    65    70   -35   4.79 0.3762
WVFGRD96   28.0    65    70   -35   4.79 0.3698
WVFGRD96   29.0    65    70   -35   4.80 0.3633

The best solution is

WVFGRD96   11.0   270    60    50   4.67 0.5213

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Tue Apr 23 02:25:26 AM CDT 2024