The ANSS event ID is ak023a0j9eo0 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak023a0j9eo0/executive.
2023/08/06 00:17:51 59.676 -153.278 107.9 4.7 Alaska
USGS/SLU Moment Tensor Solution ENS 2023/08/06 00:17:51:0 59.68 -153.28 107.9 4.7 Alaska Stations used: AK.BRLK AK.BRSE AK.CAPN AK.CNP AK.FIRE AK.GHO AK.HOM AK.L19K AK.L20K AK.M19K AK.M20K AK.N18K AK.O18K AK.O19K AK.O20K AK.P17K AK.Q19K AK.RC01 AK.SKN AK.SLK AT.PMR AV.ACH AV.ANCK AV.AU22 AV.AUCH AV.AUJA AV.AUL AV.AULG AV.AUNO AV.AUSB AV.AUW AV.AUWS AV.CAHL AV.ILCB AV.ILLG AV.ILNE AV.ILS AV.ILSW AV.IVE AV.KAB2 AV.KABU AV.KAHG AV.KAKN AV.KARR AV.KAVE AV.KAWH AV.KBM AV.KEL AV.KJL AV.KVT AV.MGLS AV.N20K AV.NCT AV.P18K AV.PLK1 AV.PLK2 AV.Q18K AV.Q20K AV.R17L AV.RDDF AV.RDSO AV.RDT AV.RED AV.REF AV.SPBG AV.SPCG AV.SPCL AV.SPCN AV.SPCP AV.SPCR AV.SPNN AV.STLK II.KDAK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 8.41e+22 dyne-cm Mw = 4.55 Z = 106 km Plane Strike Dip Rake NP1 303 71 159 NP2 40 70 20 Principal Axes: Axis Value Plunge Azimuth T 8.41e+22 28 261 N 0.00e+00 62 83 P -8.41e+22 1 352 Moment Tensor: (dyne-cm) Component Value Mxx -8.08e+22 Mxy 2.20e+22 Mxz -6.55e+21 Myy 6.23e+22 Myz -3.43e+22 Mzz 1.85e+22 --- P -------- ------- ------------ ---------------------------# ----------------------------## ------------------------------#### ########----------------------###### ##############----------------######## ##################------------########## ######################-------########### #########################----############# ########################################## ##### ###################---############ ##### T #################-------########## #### ################----------####### #####################--------------##### ##################-----------------### ###############--------------------# ############---------------------- #######----------------------- #--------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.85e+22 -6.55e+21 3.43e+22 -6.55e+21 -8.08e+22 -2.20e+22 3.43e+22 -2.20e+22 6.23e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230806001751/index.html |
STK = 40 DIP = 70 RAKE = 20 MW = 4.55 HS = 106.0
The NDK file is 20230806001751.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 310 60 -15 3.53 0.1359 WVFGRD96 4.0 315 65 15 3.63 0.1625 WVFGRD96 6.0 315 65 20 3.70 0.1841 WVFGRD96 8.0 315 60 25 3.79 0.2002 WVFGRD96 10.0 315 55 25 3.84 0.2042 WVFGRD96 12.0 310 60 25 3.85 0.2013 WVFGRD96 14.0 310 60 25 3.88 0.1936 WVFGRD96 16.0 310 50 30 3.91 0.1825 WVFGRD96 18.0 315 45 35 3.94 0.1707 WVFGRD96 20.0 220 70 50 3.93 0.1570 WVFGRD96 22.0 220 70 45 3.95 0.1590 WVFGRD96 24.0 220 75 35 3.96 0.1599 WVFGRD96 26.0 220 80 25 3.97 0.1633 WVFGRD96 28.0 220 80 20 3.99 0.1679 WVFGRD96 30.0 220 80 15 4.00 0.1729 WVFGRD96 32.0 220 85 10 4.02 0.1784 WVFGRD96 34.0 40 90 -5 4.04 0.1829 WVFGRD96 36.0 40 90 0 4.07 0.1900 WVFGRD96 38.0 220 90 0 4.11 0.2008 WVFGRD96 40.0 35 80 5 4.15 0.2198 WVFGRD96 42.0 35 75 5 4.19 0.2326 WVFGRD96 44.0 215 80 -15 4.23 0.2518 WVFGRD96 46.0 215 85 -15 4.26 0.2808 WVFGRD96 48.0 35 80 20 4.28 0.3140 WVFGRD96 50.0 35 75 20 4.31 0.3553 WVFGRD96 52.0 40 75 15 4.35 0.3964 WVFGRD96 54.0 40 70 15 4.37 0.4301 WVFGRD96 56.0 40 70 10 4.39 0.4537 WVFGRD96 58.0 40 70 10 4.40 0.4696 WVFGRD96 60.0 40 70 10 4.42 0.4847 WVFGRD96 62.0 40 70 10 4.43 0.4968 WVFGRD96 64.0 40 70 10 4.44 0.5089 WVFGRD96 66.0 40 70 10 4.45 0.5180 WVFGRD96 68.0 40 70 10 4.46 0.5281 WVFGRD96 70.0 40 70 10 4.46 0.5371 WVFGRD96 72.0 40 70 10 4.47 0.5456 WVFGRD96 74.0 40 70 10 4.48 0.5523 WVFGRD96 76.0 40 70 10 4.48 0.5583 WVFGRD96 78.0 40 70 10 4.49 0.5633 WVFGRD96 80.0 40 70 15 4.49 0.5684 WVFGRD96 82.0 40 70 15 4.50 0.5734 WVFGRD96 84.0 40 70 15 4.50 0.5775 WVFGRD96 86.0 40 70 15 4.51 0.5815 WVFGRD96 88.0 40 70 15 4.51 0.5845 WVFGRD96 90.0 40 70 15 4.52 0.5876 WVFGRD96 92.0 40 70 15 4.52 0.5900 WVFGRD96 94.0 40 70 15 4.53 0.5921 WVFGRD96 96.0 40 70 15 4.53 0.5940 WVFGRD96 98.0 40 70 15 4.54 0.5955 WVFGRD96 100.0 40 70 15 4.54 0.5968 WVFGRD96 102.0 40 70 20 4.54 0.5982 WVFGRD96 104.0 40 70 20 4.54 0.5988 WVFGRD96 106.0 40 70 20 4.55 0.5996 WVFGRD96 108.0 40 70 20 4.55 0.5985 WVFGRD96 110.0 40 70 20 4.55 0.5990 WVFGRD96 112.0 40 70 20 4.56 0.5988 WVFGRD96 114.0 40 70 20 4.56 0.5986 WVFGRD96 116.0 40 70 20 4.57 0.5970 WVFGRD96 118.0 40 70 20 4.57 0.5964 WVFGRD96 120.0 40 70 20 4.57 0.5960 WVFGRD96 122.0 40 70 20 4.58 0.5946 WVFGRD96 124.0 40 70 20 4.58 0.5923 WVFGRD96 126.0 40 70 20 4.58 0.5925 WVFGRD96 128.0 40 70 20 4.59 0.5911 WVFGRD96 130.0 40 70 20 4.59 0.5890 WVFGRD96 132.0 40 70 20 4.59 0.5875 WVFGRD96 134.0 40 70 20 4.60 0.5862 WVFGRD96 136.0 40 70 20 4.60 0.5835 WVFGRD96 138.0 40 70 20 4.60 0.5821 WVFGRD96 140.0 40 70 20 4.60 0.5802 WVFGRD96 142.0 40 70 20 4.61 0.5772 WVFGRD96 144.0 40 70 20 4.61 0.5758 WVFGRD96 146.0 40 70 20 4.61 0.5730 WVFGRD96 148.0 40 70 20 4.62 0.5713
The best solution is
WVFGRD96 106.0 40 70 20 4.55 0.5996
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00