Location

Location ANSS

The ANSS event ID is ak023a0j9eo0 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak023a0j9eo0/executive.

2023/08/06 00:17:51 59.676 -153.278 107.9 4.7 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2023/08/06 00:17:51:0  59.68 -153.28 107.9 4.7 Alaska
 
 Stations used:
   AK.BRLK AK.BRSE AK.CAPN AK.CNP AK.FIRE AK.GHO AK.HOM 
   AK.L19K AK.L20K AK.M19K AK.M20K AK.N18K AK.O18K AK.O19K 
   AK.O20K AK.P17K AK.Q19K AK.RC01 AK.SKN AK.SLK AT.PMR AV.ACH 
   AV.ANCK AV.AU22 AV.AUCH AV.AUJA AV.AUL AV.AULG AV.AUNO 
   AV.AUSB AV.AUW AV.AUWS AV.CAHL AV.ILCB AV.ILLG AV.ILNE 
   AV.ILS AV.ILSW AV.IVE AV.KAB2 AV.KABU AV.KAHG AV.KAKN 
   AV.KARR AV.KAVE AV.KAWH AV.KBM AV.KEL AV.KJL AV.KVT AV.MGLS 
   AV.N20K AV.NCT AV.P18K AV.PLK1 AV.PLK2 AV.Q18K AV.Q20K 
   AV.R17L AV.RDDF AV.RDSO AV.RDT AV.RED AV.REF AV.SPBG 
   AV.SPCG AV.SPCL AV.SPCN AV.SPCP AV.SPCR AV.SPNN AV.STLK 
   II.KDAK 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 8.41e+22 dyne-cm
  Mw = 4.55 
  Z  = 106 km
  Plane   Strike  Dip  Rake
   NP1      303    71   159
   NP2       40    70    20
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.41e+22     28     261
    N   0.00e+00     62      83
    P  -8.41e+22      1     352

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -8.08e+22
       Mxy     2.20e+22
       Mxz    -6.55e+21
       Myy     6.23e+22
       Myz    -3.43e+22
       Mzz     1.85e+22
                                                     
                                                     
                                                     
                                                     
                     --- P --------                  
                 -------   ------------              
              ---------------------------#           
             ----------------------------##          
           ------------------------------####        
          ########----------------------######       
         ##############----------------########      
        ##################------------##########     
        ######################-------###########     
       #########################----#############    
       ##########################################    
       #####   ###################---############    
       ##### T #################-------##########    
        ####   ################----------#######     
        #####################--------------#####     
         ##################-----------------###      
          ###############--------------------#       
           ############----------------------        
             #######-----------------------          
              #---------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.85e+22  -6.55e+21   3.43e+22 
 -6.55e+21  -8.08e+22  -2.20e+22 
  3.43e+22  -2.20e+22   6.23e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230806001751/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 40
      DIP = 70
     RAKE = 20
       MW = 4.55
       HS = 106.0

The NDK file is 20230806001751.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   310    60   -15   3.53 0.1359
WVFGRD96    4.0   315    65    15   3.63 0.1625
WVFGRD96    6.0   315    65    20   3.70 0.1841
WVFGRD96    8.0   315    60    25   3.79 0.2002
WVFGRD96   10.0   315    55    25   3.84 0.2042
WVFGRD96   12.0   310    60    25   3.85 0.2013
WVFGRD96   14.0   310    60    25   3.88 0.1936
WVFGRD96   16.0   310    50    30   3.91 0.1825
WVFGRD96   18.0   315    45    35   3.94 0.1707
WVFGRD96   20.0   220    70    50   3.93 0.1570
WVFGRD96   22.0   220    70    45   3.95 0.1590
WVFGRD96   24.0   220    75    35   3.96 0.1599
WVFGRD96   26.0   220    80    25   3.97 0.1633
WVFGRD96   28.0   220    80    20   3.99 0.1679
WVFGRD96   30.0   220    80    15   4.00 0.1729
WVFGRD96   32.0   220    85    10   4.02 0.1784
WVFGRD96   34.0    40    90    -5   4.04 0.1829
WVFGRD96   36.0    40    90     0   4.07 0.1900
WVFGRD96   38.0   220    90     0   4.11 0.2008
WVFGRD96   40.0    35    80     5   4.15 0.2198
WVFGRD96   42.0    35    75     5   4.19 0.2326
WVFGRD96   44.0   215    80   -15   4.23 0.2518
WVFGRD96   46.0   215    85   -15   4.26 0.2808
WVFGRD96   48.0    35    80    20   4.28 0.3140
WVFGRD96   50.0    35    75    20   4.31 0.3553
WVFGRD96   52.0    40    75    15   4.35 0.3964
WVFGRD96   54.0    40    70    15   4.37 0.4301
WVFGRD96   56.0    40    70    10   4.39 0.4537
WVFGRD96   58.0    40    70    10   4.40 0.4696
WVFGRD96   60.0    40    70    10   4.42 0.4847
WVFGRD96   62.0    40    70    10   4.43 0.4968
WVFGRD96   64.0    40    70    10   4.44 0.5089
WVFGRD96   66.0    40    70    10   4.45 0.5180
WVFGRD96   68.0    40    70    10   4.46 0.5281
WVFGRD96   70.0    40    70    10   4.46 0.5371
WVFGRD96   72.0    40    70    10   4.47 0.5456
WVFGRD96   74.0    40    70    10   4.48 0.5523
WVFGRD96   76.0    40    70    10   4.48 0.5583
WVFGRD96   78.0    40    70    10   4.49 0.5633
WVFGRD96   80.0    40    70    15   4.49 0.5684
WVFGRD96   82.0    40    70    15   4.50 0.5734
WVFGRD96   84.0    40    70    15   4.50 0.5775
WVFGRD96   86.0    40    70    15   4.51 0.5815
WVFGRD96   88.0    40    70    15   4.51 0.5845
WVFGRD96   90.0    40    70    15   4.52 0.5876
WVFGRD96   92.0    40    70    15   4.52 0.5900
WVFGRD96   94.0    40    70    15   4.53 0.5921
WVFGRD96   96.0    40    70    15   4.53 0.5940
WVFGRD96   98.0    40    70    15   4.54 0.5955
WVFGRD96  100.0    40    70    15   4.54 0.5968
WVFGRD96  102.0    40    70    20   4.54 0.5982
WVFGRD96  104.0    40    70    20   4.54 0.5988
WVFGRD96  106.0    40    70    20   4.55 0.5996
WVFGRD96  108.0    40    70    20   4.55 0.5985
WVFGRD96  110.0    40    70    20   4.55 0.5990
WVFGRD96  112.0    40    70    20   4.56 0.5988
WVFGRD96  114.0    40    70    20   4.56 0.5986
WVFGRD96  116.0    40    70    20   4.57 0.5970
WVFGRD96  118.0    40    70    20   4.57 0.5964
WVFGRD96  120.0    40    70    20   4.57 0.5960
WVFGRD96  122.0    40    70    20   4.58 0.5946
WVFGRD96  124.0    40    70    20   4.58 0.5923
WVFGRD96  126.0    40    70    20   4.58 0.5925
WVFGRD96  128.0    40    70    20   4.59 0.5911
WVFGRD96  130.0    40    70    20   4.59 0.5890
WVFGRD96  132.0    40    70    20   4.59 0.5875
WVFGRD96  134.0    40    70    20   4.60 0.5862
WVFGRD96  136.0    40    70    20   4.60 0.5835
WVFGRD96  138.0    40    70    20   4.60 0.5821
WVFGRD96  140.0    40    70    20   4.60 0.5802
WVFGRD96  142.0    40    70    20   4.61 0.5772
WVFGRD96  144.0    40    70    20   4.61 0.5758
WVFGRD96  146.0    40    70    20   4.61 0.5730
WVFGRD96  148.0    40    70    20   4.62 0.5713

The best solution is

WVFGRD96  106.0    40    70    20   4.55 0.5996

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Tue Apr 23 02:14:11 AM CDT 2024