The ANSS event ID is ak0238x1rasm and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0238x1rasm/executive.
2023/07/13 12:59:58 62.987 -150.466 101.5 3.6 Alaska
USGS/SLU Moment Tensor Solution ENS 2023/07/13 12:59:58:0 62.99 -150.47 101.5 3.6 Alaska Stations used: AK.CAST AK.CCB AK.DHY AK.GHO AK.HDA AK.J19K AK.J20K AK.K20K AK.K24K AK.KNK AK.L20K AK.MCK AK.MLY AK.PAX AK.PPLA AK.RND AK.SAW AK.SCM AK.SKN AK.WAT6 AK.WRH AT.PMR AV.SPCP AV.STLK IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 5.89e+21 dyne-cm Mw = 3.78 Z = 116 km Plane Strike Dip Rake NP1 2 84 130 NP2 100 40 10 Principal Axes: Axis Value Plunge Azimuth T 5.89e+21 38 307 N 0.00e+00 39 177 P -5.89e+21 28 62 Moment Tensor: (dyne-cm) Component Value Mxx 2.98e+20 Mxy -3.67e+21 Mxz 5.97e+20 Myy -1.31e+21 Myz -4.41e+21 Mzz 1.01e+21 ########------ ############---------- ###############------------- #################------------- ###################--------------- ###### ###########---------------- ####### T ###########---------- ---- ######## ###########---------- P ----- ######################---------- ----- -######################------------------- -######################------------------- --#####################------------------- ---####################------------------- ----#################------------------- ------###############-----------------## -------#############---------------### ---------##########------------##### --------------####-------######### ---------------############### --------------############## -----------########### ------######## Global CMT Convention Moment Tensor: R T P 1.01e+21 5.97e+20 4.41e+21 5.97e+20 2.98e+20 3.67e+21 4.41e+21 3.67e+21 -1.31e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230713125958/index.html |
STK = 100 DIP = 40 RAKE = 10 MW = 3.78 HS = 116.0
The NDK file is 20230713125958.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 175 50 -70 2.86 0.1871 WVFGRD96 4.0 25 45 0 2.89 0.1946 WVFGRD96 6.0 210 55 25 2.95 0.2301 WVFGRD96 8.0 210 55 25 3.04 0.2522 WVFGRD96 10.0 30 60 20 3.08 0.2639 WVFGRD96 12.0 25 60 15 3.12 0.2690 WVFGRD96 14.0 25 60 15 3.15 0.2690 WVFGRD96 16.0 30 55 15 3.18 0.2631 WVFGRD96 18.0 130 75 40 3.19 0.2548 WVFGRD96 20.0 130 80 40 3.21 0.2541 WVFGRD96 22.0 300 75 30 3.26 0.2628 WVFGRD96 24.0 300 75 25 3.28 0.2719 WVFGRD96 26.0 295 80 25 3.31 0.2793 WVFGRD96 28.0 275 60 5 3.33 0.2881 WVFGRD96 30.0 275 65 0 3.35 0.2937 WVFGRD96 32.0 275 70 5 3.36 0.2954 WVFGRD96 34.0 275 70 5 3.37 0.2967 WVFGRD96 36.0 275 70 5 3.39 0.2922 WVFGRD96 38.0 100 75 20 3.42 0.2858 WVFGRD96 40.0 100 70 25 3.48 0.2896 WVFGRD96 42.0 100 70 25 3.51 0.2950 WVFGRD96 44.0 100 70 25 3.53 0.2962 WVFGRD96 46.0 100 70 25 3.55 0.2975 WVFGRD96 48.0 100 75 25 3.57 0.3023 WVFGRD96 50.0 100 80 30 3.59 0.3107 WVFGRD96 52.0 100 80 30 3.61 0.3191 WVFGRD96 54.0 105 75 40 3.64 0.3287 WVFGRD96 56.0 105 75 40 3.65 0.3376 WVFGRD96 58.0 105 55 20 3.63 0.3500 WVFGRD96 60.0 105 55 20 3.64 0.3640 WVFGRD96 62.0 105 55 20 3.65 0.3775 WVFGRD96 64.0 105 50 20 3.65 0.3933 WVFGRD96 66.0 105 55 20 3.66 0.4074 WVFGRD96 68.0 105 55 20 3.67 0.4204 WVFGRD96 70.0 105 50 20 3.68 0.4325 WVFGRD96 72.0 100 45 15 3.68 0.4455 WVFGRD96 74.0 100 45 15 3.69 0.4570 WVFGRD96 76.0 95 45 10 3.69 0.4691 WVFGRD96 78.0 100 40 15 3.70 0.4800 WVFGRD96 80.0 100 40 15 3.71 0.4893 WVFGRD96 82.0 100 45 15 3.71 0.4992 WVFGRD96 84.0 100 45 15 3.71 0.5101 WVFGRD96 86.0 100 45 15 3.72 0.5198 WVFGRD96 88.0 100 40 15 3.73 0.5294 WVFGRD96 90.0 100 40 15 3.73 0.5392 WVFGRD96 92.0 100 40 15 3.73 0.5489 WVFGRD96 94.0 100 40 15 3.74 0.5583 WVFGRD96 96.0 100 40 15 3.74 0.5659 WVFGRD96 98.0 100 40 15 3.75 0.5726 WVFGRD96 100.0 100 40 15 3.75 0.5791 WVFGRD96 102.0 100 40 15 3.75 0.5843 WVFGRD96 104.0 100 40 10 3.76 0.5888 WVFGRD96 106.0 100 40 10 3.76 0.5933 WVFGRD96 108.0 100 40 10 3.77 0.5969 WVFGRD96 110.0 100 40 10 3.77 0.5989 WVFGRD96 112.0 100 40 10 3.77 0.6001 WVFGRD96 114.0 100 40 10 3.77 0.6011 WVFGRD96 116.0 100 40 10 3.78 0.6021 WVFGRD96 118.0 100 40 10 3.78 0.6013 WVFGRD96 120.0 100 40 10 3.78 0.5989 WVFGRD96 122.0 100 40 10 3.78 0.5966 WVFGRD96 124.0 100 40 10 3.78 0.5938 WVFGRD96 126.0 100 40 10 3.78 0.5916 WVFGRD96 128.0 95 45 10 3.78 0.5893 WVFGRD96 130.0 100 40 15 3.78 0.5868 WVFGRD96 132.0 100 40 15 3.78 0.5833 WVFGRD96 134.0 100 40 15 3.78 0.5796 WVFGRD96 136.0 100 40 15 3.78 0.5761 WVFGRD96 138.0 100 45 15 3.78 0.5734 WVFGRD96 140.0 100 45 15 3.78 0.5708 WVFGRD96 142.0 95 50 5 3.79 0.5671 WVFGRD96 144.0 100 45 15 3.79 0.5631 WVFGRD96 146.0 95 55 5 3.79 0.5612 WVFGRD96 148.0 95 55 5 3.80 0.5592 WVFGRD96 150.0 95 55 5 3.80 0.5569 WVFGRD96 152.0 95 55 5 3.80 0.5532 WVFGRD96 154.0 95 55 5 3.80 0.5517 WVFGRD96 156.0 95 55 5 3.80 0.5498 WVFGRD96 158.0 95 55 5 3.81 0.5467
The best solution is
WVFGRD96 116.0 100 40 10 3.78 0.6021
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00