The ANSS event ID is ak0238wy2apd and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0238wy2apd/executive.
2023/07/13 06:39:00 63.639 -149.933 141.0 3.7 Alaska
USGS/SLU Moment Tensor Solution ENS 2023/07/13 06:39:00:0 63.64 -149.93 141.0 3.7 Alaska Stations used: AK.BPAW AK.CAST AK.CCB AK.CUT AK.DHY AK.GCSA AK.GHO AK.H23K AK.J19K AK.J20K AK.K24K AK.KTH AK.L20K AK.L22K AK.MCK AK.MLY AK.NEA2 AK.PAX AK.POKR AK.PPLA AK.RND AK.SAW AK.SCM AK.SKN AK.WAT6 AT.PMR AV.SPCP IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 8.04e+21 dyne-cm Mw = 3.87 Z = 146 km Plane Strike Dip Rake NP1 100 55 -45 NP2 220 55 -135 Principal Axes: Axis Value Plunge Azimuth T 8.04e+21 0 160 N 0.00e+00 35 250 P -8.04e+21 55 70 Moment Tensor: (dyne-cm) Component Value Mxx 6.77e+21 Mxy -3.46e+21 Mxz -1.35e+21 Myy -1.43e+21 Myz -3.55e+21 Mzz -5.34e+21 ############## ###################### #######################----- ##################------------ #################----------------- ################-------------------- ###############----------------------- ##############-------------------------- ############--------------- ---------- -###########---------------- P ----------- --#########----------------- ----------- ----######-------------------------------- ------###--------------------------------- ---------------------------------------# -------####-------------------------#### -----###########---------------####### ----################################ ---############################### -############################# -########################### ################ ### ############ T Global CMT Convention Moment Tensor: R T P -5.34e+21 -1.35e+21 3.55e+21 -1.35e+21 6.77e+21 3.46e+21 3.55e+21 3.46e+21 -1.43e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230713063900/index.html |
STK = 100 DIP = 55 RAKE = -45 MW = 3.87 HS = 146.0
The NDK file is 20230713063900.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 255 45 90 2.96 0.2077 WVFGRD96 4.0 40 90 -30 2.92 0.2013 WVFGRD96 6.0 35 80 -30 2.98 0.2309 WVFGRD96 8.0 200 55 -15 3.08 0.2572 WVFGRD96 10.0 200 60 -15 3.12 0.2703 WVFGRD96 12.0 200 60 -15 3.16 0.2725 WVFGRD96 14.0 200 60 -10 3.18 0.2659 WVFGRD96 16.0 200 60 -10 3.21 0.2534 WVFGRD96 18.0 55 70 40 3.24 0.2438 WVFGRD96 20.0 85 80 -50 3.27 0.2346 WVFGRD96 22.0 270 75 -50 3.30 0.2406 WVFGRD96 24.0 270 75 -50 3.33 0.2469 WVFGRD96 26.0 270 75 -50 3.35 0.2506 WVFGRD96 28.0 270 75 -50 3.37 0.2493 WVFGRD96 30.0 275 80 -45 3.38 0.2461 WVFGRD96 32.0 100 90 40 3.39 0.2408 WVFGRD96 34.0 100 85 40 3.41 0.2383 WVFGRD96 36.0 280 90 -35 3.41 0.2347 WVFGRD96 38.0 105 85 35 3.44 0.2341 WVFGRD96 40.0 100 90 45 3.53 0.2316 WVFGRD96 42.0 280 90 -40 3.54 0.2320 WVFGRD96 44.0 105 90 35 3.54 0.2295 WVFGRD96 46.0 285 80 -35 3.56 0.2311 WVFGRD96 48.0 285 80 -30 3.57 0.2331 WVFGRD96 50.0 105 85 30 3.59 0.2340 WVFGRD96 52.0 285 80 -30 3.60 0.2391 WVFGRD96 54.0 105 90 30 3.61 0.2450 WVFGRD96 56.0 105 90 30 3.63 0.2542 WVFGRD96 58.0 105 90 30 3.64 0.2638 WVFGRD96 60.0 105 90 30 3.65 0.2729 WVFGRD96 62.0 105 90 30 3.66 0.2801 WVFGRD96 64.0 285 80 -25 3.66 0.2917 WVFGRD96 66.0 290 80 -25 3.67 0.3037 WVFGRD96 68.0 290 80 -20 3.67 0.3162 WVFGRD96 70.0 110 65 -20 3.67 0.3494 WVFGRD96 72.0 110 65 -20 3.69 0.3895 WVFGRD96 74.0 110 65 -25 3.71 0.4305 WVFGRD96 76.0 105 60 -30 3.73 0.4634 WVFGRD96 78.0 105 60 -30 3.74 0.4869 WVFGRD96 80.0 105 60 -35 3.74 0.4987 WVFGRD96 82.0 105 60 -35 3.75 0.5142 WVFGRD96 84.0 105 60 -35 3.75 0.5313 WVFGRD96 86.0 105 60 -35 3.76 0.5509 WVFGRD96 88.0 105 60 -35 3.77 0.5675 WVFGRD96 90.0 105 60 -35 3.77 0.5764 WVFGRD96 92.0 105 60 -35 3.78 0.5822 WVFGRD96 94.0 105 60 -35 3.78 0.5872 WVFGRD96 96.0 100 55 -40 3.79 0.5935 WVFGRD96 98.0 100 55 -40 3.79 0.5989 WVFGRD96 100.0 100 55 -40 3.80 0.6033 WVFGRD96 102.0 100 55 -40 3.80 0.6066 WVFGRD96 104.0 100 55 -40 3.80 0.6113 WVFGRD96 106.0 100 55 -40 3.81 0.6140 WVFGRD96 108.0 100 55 -40 3.81 0.6164 WVFGRD96 110.0 100 55 -40 3.81 0.6202 WVFGRD96 112.0 100 55 -40 3.82 0.6216 WVFGRD96 114.0 100 55 -40 3.82 0.6232 WVFGRD96 116.0 100 55 -40 3.83 0.6254 WVFGRD96 118.0 100 55 -40 3.83 0.6251 WVFGRD96 120.0 100 55 -40 3.83 0.6274 WVFGRD96 122.0 100 55 -40 3.83 0.6268 WVFGRD96 124.0 100 55 -40 3.84 0.6279 WVFGRD96 126.0 100 55 -40 3.84 0.6283 WVFGRD96 128.0 100 55 -40 3.84 0.6280 WVFGRD96 130.0 100 55 -40 3.85 0.6294 WVFGRD96 132.0 100 55 -40 3.85 0.6288 WVFGRD96 134.0 100 55 -40 3.85 0.6305 WVFGRD96 136.0 100 55 -45 3.86 0.6298 WVFGRD96 138.0 100 55 -45 3.86 0.6310 WVFGRD96 140.0 100 55 -45 3.86 0.6302 WVFGRD96 142.0 100 55 -45 3.86 0.6314 WVFGRD96 144.0 100 55 -45 3.87 0.6316 WVFGRD96 146.0 100 55 -45 3.87 0.6327 WVFGRD96 148.0 100 55 -45 3.87 0.6313 WVFGRD96 150.0 100 55 -45 3.88 0.6316 WVFGRD96 152.0 100 55 -45 3.88 0.6317 WVFGRD96 154.0 100 55 -45 3.88 0.6326 WVFGRD96 156.0 100 55 -45 3.88 0.6306 WVFGRD96 158.0 100 55 -45 3.89 0.6299
The best solution is
WVFGRD96 146.0 100 55 -45 3.87 0.6327
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00