Location

Location ANSS

The ANSS event ID is ak0238wy2apd and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0238wy2apd/executive.

2023/07/13 06:39:00 63.639 -149.933 141.0 3.7 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2023/07/13 06:39:00:0  63.64 -149.93 141.0 3.7 Alaska
 
 Stations used:
   AK.BPAW AK.CAST AK.CCB AK.CUT AK.DHY AK.GCSA AK.GHO AK.H23K 
   AK.J19K AK.J20K AK.K24K AK.KTH AK.L20K AK.L22K AK.MCK 
   AK.MLY AK.NEA2 AK.PAX AK.POKR AK.PPLA AK.RND AK.SAW AK.SCM 
   AK.SKN AK.WAT6 AT.PMR AV.SPCP IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 8.04e+21 dyne-cm
  Mw = 3.87 
  Z  = 146 km
  Plane   Strike  Dip  Rake
   NP1      100    55   -45
   NP2      220    55   -135
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.04e+21      0     160
    N   0.00e+00     35     250
    P  -8.04e+21     55      70

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     6.77e+21
       Mxy    -3.46e+21
       Mxz    -1.35e+21
       Myy    -1.43e+21
       Myz    -3.55e+21
       Mzz    -5.34e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              #######################-----           
             ##################------------          
           #################-----------------        
          ################--------------------       
         ###############-----------------------      
        ##############--------------------------     
        ############---------------   ----------     
       -###########---------------- P -----------    
       --#########-----------------   -----------    
       ----######--------------------------------    
       ------###---------------------------------    
        ---------------------------------------#     
        -------####-------------------------####     
         -----###########---------------#######      
          ----################################       
           ---###############################        
             -#############################          
              -###########################           
                 ################   ###              
                     ############ T                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.34e+21  -1.35e+21   3.55e+21 
 -1.35e+21   6.77e+21   3.46e+21 
  3.55e+21   3.46e+21  -1.43e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230713063900/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 100
      DIP = 55
     RAKE = -45
       MW = 3.87
       HS = 146.0

The NDK file is 20230713063900.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   255    45    90   2.96 0.2077
WVFGRD96    4.0    40    90   -30   2.92 0.2013
WVFGRD96    6.0    35    80   -30   2.98 0.2309
WVFGRD96    8.0   200    55   -15   3.08 0.2572
WVFGRD96   10.0   200    60   -15   3.12 0.2703
WVFGRD96   12.0   200    60   -15   3.16 0.2725
WVFGRD96   14.0   200    60   -10   3.18 0.2659
WVFGRD96   16.0   200    60   -10   3.21 0.2534
WVFGRD96   18.0    55    70    40   3.24 0.2438
WVFGRD96   20.0    85    80   -50   3.27 0.2346
WVFGRD96   22.0   270    75   -50   3.30 0.2406
WVFGRD96   24.0   270    75   -50   3.33 0.2469
WVFGRD96   26.0   270    75   -50   3.35 0.2506
WVFGRD96   28.0   270    75   -50   3.37 0.2493
WVFGRD96   30.0   275    80   -45   3.38 0.2461
WVFGRD96   32.0   100    90    40   3.39 0.2408
WVFGRD96   34.0   100    85    40   3.41 0.2383
WVFGRD96   36.0   280    90   -35   3.41 0.2347
WVFGRD96   38.0   105    85    35   3.44 0.2341
WVFGRD96   40.0   100    90    45   3.53 0.2316
WVFGRD96   42.0   280    90   -40   3.54 0.2320
WVFGRD96   44.0   105    90    35   3.54 0.2295
WVFGRD96   46.0   285    80   -35   3.56 0.2311
WVFGRD96   48.0   285    80   -30   3.57 0.2331
WVFGRD96   50.0   105    85    30   3.59 0.2340
WVFGRD96   52.0   285    80   -30   3.60 0.2391
WVFGRD96   54.0   105    90    30   3.61 0.2450
WVFGRD96   56.0   105    90    30   3.63 0.2542
WVFGRD96   58.0   105    90    30   3.64 0.2638
WVFGRD96   60.0   105    90    30   3.65 0.2729
WVFGRD96   62.0   105    90    30   3.66 0.2801
WVFGRD96   64.0   285    80   -25   3.66 0.2917
WVFGRD96   66.0   290    80   -25   3.67 0.3037
WVFGRD96   68.0   290    80   -20   3.67 0.3162
WVFGRD96   70.0   110    65   -20   3.67 0.3494
WVFGRD96   72.0   110    65   -20   3.69 0.3895
WVFGRD96   74.0   110    65   -25   3.71 0.4305
WVFGRD96   76.0   105    60   -30   3.73 0.4634
WVFGRD96   78.0   105    60   -30   3.74 0.4869
WVFGRD96   80.0   105    60   -35   3.74 0.4987
WVFGRD96   82.0   105    60   -35   3.75 0.5142
WVFGRD96   84.0   105    60   -35   3.75 0.5313
WVFGRD96   86.0   105    60   -35   3.76 0.5509
WVFGRD96   88.0   105    60   -35   3.77 0.5675
WVFGRD96   90.0   105    60   -35   3.77 0.5764
WVFGRD96   92.0   105    60   -35   3.78 0.5822
WVFGRD96   94.0   105    60   -35   3.78 0.5872
WVFGRD96   96.0   100    55   -40   3.79 0.5935
WVFGRD96   98.0   100    55   -40   3.79 0.5989
WVFGRD96  100.0   100    55   -40   3.80 0.6033
WVFGRD96  102.0   100    55   -40   3.80 0.6066
WVFGRD96  104.0   100    55   -40   3.80 0.6113
WVFGRD96  106.0   100    55   -40   3.81 0.6140
WVFGRD96  108.0   100    55   -40   3.81 0.6164
WVFGRD96  110.0   100    55   -40   3.81 0.6202
WVFGRD96  112.0   100    55   -40   3.82 0.6216
WVFGRD96  114.0   100    55   -40   3.82 0.6232
WVFGRD96  116.0   100    55   -40   3.83 0.6254
WVFGRD96  118.0   100    55   -40   3.83 0.6251
WVFGRD96  120.0   100    55   -40   3.83 0.6274
WVFGRD96  122.0   100    55   -40   3.83 0.6268
WVFGRD96  124.0   100    55   -40   3.84 0.6279
WVFGRD96  126.0   100    55   -40   3.84 0.6283
WVFGRD96  128.0   100    55   -40   3.84 0.6280
WVFGRD96  130.0   100    55   -40   3.85 0.6294
WVFGRD96  132.0   100    55   -40   3.85 0.6288
WVFGRD96  134.0   100    55   -40   3.85 0.6305
WVFGRD96  136.0   100    55   -45   3.86 0.6298
WVFGRD96  138.0   100    55   -45   3.86 0.6310
WVFGRD96  140.0   100    55   -45   3.86 0.6302
WVFGRD96  142.0   100    55   -45   3.86 0.6314
WVFGRD96  144.0   100    55   -45   3.87 0.6316
WVFGRD96  146.0   100    55   -45   3.87 0.6327
WVFGRD96  148.0   100    55   -45   3.87 0.6313
WVFGRD96  150.0   100    55   -45   3.88 0.6316
WVFGRD96  152.0   100    55   -45   3.88 0.6317
WVFGRD96  154.0   100    55   -45   3.88 0.6326
WVFGRD96  156.0   100    55   -45   3.88 0.6306
WVFGRD96  158.0   100    55   -45   3.89 0.6299

The best solution is

WVFGRD96  146.0   100    55   -45   3.87 0.6327

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Tue Apr 23 01:14:17 AM CDT 2024