The ANSS event ID is tx2023nnyj and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/tx2023nnyj/executive.
2023/07/12 15:02:39 31.560 -104.094 6.1 3.8 Texas
USGS/SLU Moment Tensor Solution
ENS 2023/07/12 15:02:39:0 31.56 -104.09 6.1 3.8 Texas
Stations used:
4O.BP01 4O.CV01 4O.DB03 4O.DB04 4O.MID01 4O.MID03 4O.WB01
4O.WB02 4O.WB03 4O.WB04 4O.WB05 4O.WB06 4O.WB07 4O.WB08
4O.WB09 4O.WB10 4O.WB12 4T.NM01 4T.NM03 TX.ALPN TX.MB01
TX.MB02 TX.MB18 TX.MNHN TX.ODSA TX.PB01 TX.PB03 TX.PB04
TX.PB05 TX.PB07 TX.PB08 TX.PB09 TX.PB10 TX.PB11 TX.PB12
TX.PB13 TX.PB16 TX.PB17 TX.PB18 TX.PB21 TX.PB22 TX.PB23
TX.PB28 TX.PB34 TX.PB35 TX.PB37 TX.PB38 TX.PB42 TX.PB43
TX.PB51 TX.PECS TX.VHRN TX.YK01
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.04 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 4.32e+21 dyne-cm
Mw = 3.69
Z = 8 km
Plane Strike Dip Rake
NP1 140 55 -80
NP2 303 36 -104
Principal Axes:
Axis Value Plunge Azimuth
T 4.32e+21 9 223
N 0.00e+00 8 314
P -4.32e+21 77 84
Moment Tensor: (dyne-cm)
Component Value
Mxx 2.25e+21
Mxy 2.07e+21
Mxz -6.05e+20
Myy 1.74e+21
Myz -1.39e+21
Mzz -3.99e+21
##############
######################
-###########################
-#---------------#############
-##--------------------###########
####-----------------------#########
#####-------------------------########
#######--------------------------#######
#######---------------------------######
#########-------------- ----------######
##########------------- P -----------#####
###########------------ ------------####
############--------------------------####
############--------------------------##
##############------------------------##
###############----------------------#
################--------------------
### ###########-----------------
# T ###############-----------
####################-----
######################
##############
Global CMT Convention Moment Tensor:
R T P
-3.99e+21 -6.05e+20 1.39e+21
-6.05e+20 2.25e+21 -2.07e+21
1.39e+21 -2.07e+21 1.74e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230712150239/index.html
|
STK = 140
DIP = 55
RAKE = -80
MW = 3.69
HS = 8.0
The NDK file is 20230712150239.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2023/07/12 15:02:39:0 31.56 -104.09 6.1 3.8 Texas
Stations used:
4O.BP01 4O.CV01 4O.DB03 4O.DB04 4O.MID01 4O.MID03 4O.WB01
4O.WB02 4O.WB03 4O.WB04 4O.WB05 4O.WB06 4O.WB07 4O.WB08
4O.WB09 4O.WB10 4O.WB12 4T.NM01 4T.NM03 TX.ALPN TX.MB01
TX.MB02 TX.MB18 TX.MNHN TX.ODSA TX.PB01 TX.PB03 TX.PB04
TX.PB05 TX.PB07 TX.PB08 TX.PB09 TX.PB10 TX.PB11 TX.PB12
TX.PB13 TX.PB16 TX.PB17 TX.PB18 TX.PB21 TX.PB22 TX.PB23
TX.PB28 TX.PB34 TX.PB35 TX.PB37 TX.PB38 TX.PB42 TX.PB43
TX.PB51 TX.PECS TX.VHRN TX.YK01
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.04 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 4.32e+21 dyne-cm
Mw = 3.69
Z = 8 km
Plane Strike Dip Rake
NP1 140 55 -80
NP2 303 36 -104
Principal Axes:
Axis Value Plunge Azimuth
T 4.32e+21 9 223
N 0.00e+00 8 314
P -4.32e+21 77 84
Moment Tensor: (dyne-cm)
Component Value
Mxx 2.25e+21
Mxy 2.07e+21
Mxz -6.05e+20
Myy 1.74e+21
Myz -1.39e+21
Mzz -3.99e+21
##############
######################
-###########################
-#---------------#############
-##--------------------###########
####-----------------------#########
#####-------------------------########
#######--------------------------#######
#######---------------------------######
#########-------------- ----------######
##########------------- P -----------#####
###########------------ ------------####
############--------------------------####
############--------------------------##
##############------------------------##
###############----------------------#
################--------------------
### ###########-----------------
# T ###############-----------
####################-----
######################
##############
Global CMT Convention Moment Tensor:
R T P
-3.99e+21 -6.05e+20 1.39e+21
-6.05e+20 2.25e+21 -2.07e+21
1.39e+21 -2.07e+21 1.74e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230712150239/index.html
|
Regional Moment Tensor (Mwr) Moment 4.305e+14 N-m Magnitude 3.69 Mwr Depth 8.0 km Percent DC 98% Half Duration - Catalog US Data Source US 2 Contributor US 2 Nodal Planes Plane Strike Dip Rake NP1 291 40 -122 NP2 150 57 -66 Principal Axes Axis Value Plunge Azimuth T 4.286e+14 N-m 9 223 N 0.037e+14 N-m 20 317 P -4.323e+14 N-m 68 111 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 170 75 -25 3.22 0.2312
WVFGRD96 2.0 165 65 -40 3.40 0.2827
WVFGRD96 3.0 165 85 -65 3.51 0.3452
WVFGRD96 4.0 150 70 -70 3.55 0.4262
WVFGRD96 5.0 140 55 -80 3.59 0.5002
WVFGRD96 6.0 140 55 -85 3.60 0.5307
WVFGRD96 7.0 140 55 -85 3.61 0.5311
WVFGRD96 8.0 140 55 -80 3.69 0.5373
WVFGRD96 9.0 140 55 -85 3.68 0.5150
WVFGRD96 10.0 140 55 -85 3.68 0.4822
WVFGRD96 11.0 140 55 -85 3.68 0.4447
WVFGRD96 12.0 150 60 -70 3.67 0.4126
WVFGRD96 13.0 5 70 30 3.67 0.3944
WVFGRD96 14.0 5 70 30 3.68 0.3792
WVFGRD96 15.0 5 70 25 3.69 0.3659
WVFGRD96 16.0 5 70 25 3.69 0.3528
WVFGRD96 17.0 5 70 25 3.70 0.3426
WVFGRD96 18.0 5 70 25 3.71 0.3331
WVFGRD96 19.0 5 70 25 3.71 0.3251
WVFGRD96 20.0 5 70 25 3.72 0.3178
WVFGRD96 21.0 5 70 25 3.73 0.3104
WVFGRD96 22.0 5 70 25 3.74 0.3045
WVFGRD96 23.0 5 70 30 3.74 0.2998
WVFGRD96 24.0 5 70 30 3.75 0.2950
WVFGRD96 25.0 5 70 30 3.75 0.2901
WVFGRD96 26.0 5 70 35 3.76 0.2862
WVFGRD96 27.0 5 70 35 3.76 0.2826
WVFGRD96 28.0 5 70 40 3.77 0.2786
WVFGRD96 29.0 10 65 40 3.77 0.2762
The best solution is
WVFGRD96 8.0 140 55 -80 3.69 0.5373
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00