The ANSS event ID is ak0238gji26s and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0238gji26s/executive.
2023/07/03 14:47:29 61.289 -149.590 35.6 4.5 Alaska
USGS/SLU Moment Tensor Solution
ENS 2023/07/03 14:47:29:0 61.29 -149.59 35.6 4.5 Alaska
Stations used:
AK.BARN AK.BMR AK.BPAW AK.CAST AK.CCB AK.CNP AK.CUT AK.DHY
AK.DIV AK.EYAK AK.FID AK.FIRE AK.GHO AK.GLB AK.GLI AK.HDA
AK.HIN AK.HOM AK.I23K AK.J19K AK.J20K AK.J25K AK.K20K
AK.K24K AK.KLU AK.KNK AK.L19K AK.L20K AK.L22K AK.M19K
AK.M27K AK.MCAR AK.MCK AK.MLY AK.N18K AK.N19K AK.O18K
AK.P23K AK.PAX AK.POKR AK.PPLA AK.PWL AK.RND AK.SAW AK.SCM
AK.SCRK AK.SKN AK.SLK AK.SWD AK.VRDI AK.WAT6 AK.WRH AT.PMR
AV.SPCP AV.STLK IU.COLA
Filtering commands used:
cut o DIST/3.4 -40 o DIST/3.4 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 5.96e+22 dyne-cm
Mw = 4.45
Z = 45 km
Plane Strike Dip Rake
NP1 190 60 -90
NP2 10 30 -90
Principal Axes:
Axis Value Plunge Azimuth
T 5.96e+22 15 280
N 0.00e+00 -0 190
P -5.96e+22 75 100
Moment Tensor: (dyne-cm)
Component Value
Mxx 1.56e+21
Mxy -8.82e+21
Mxz 5.17e+21
Myy 5.00e+22
Myz -2.93e+22
Mzz -5.16e+22
#########---##
###########--------###
############------------####
############--------------####
#############----------------#####
#############------------------#####
#############--------------------#####
##############--------------------######
# #########----------------------#####
## T #########----------------------######
## ########----------- ---------######
#############----------- P ---------######
#############----------- --------#######
############----------------------######
############---------------------#######
###########---------------------######
##########--------------------######
##########-----------------#######
########----------------######
########-------------#######
######----------######
###-----######
Global CMT Convention Moment Tensor:
R T P
-5.16e+22 5.17e+21 2.93e+22
5.17e+21 1.56e+21 8.82e+21
2.93e+22 8.82e+21 5.00e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230703144729/index.html
|
STK = 10
DIP = 30
RAKE = -90
MW = 4.45
HS = 45.0
The NDK file is 20230703144729.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2023/07/03 14:47:29:0 61.29 -149.59 35.6 4.5 Alaska
Stations used:
AK.BARN AK.BMR AK.BPAW AK.CAST AK.CCB AK.CNP AK.CUT AK.DHY
AK.DIV AK.EYAK AK.FID AK.FIRE AK.GHO AK.GLB AK.GLI AK.HDA
AK.HIN AK.HOM AK.I23K AK.J19K AK.J20K AK.J25K AK.K20K
AK.K24K AK.KLU AK.KNK AK.L19K AK.L20K AK.L22K AK.M19K
AK.M27K AK.MCAR AK.MCK AK.MLY AK.N18K AK.N19K AK.O18K
AK.P23K AK.PAX AK.POKR AK.PPLA AK.PWL AK.RND AK.SAW AK.SCM
AK.SCRK AK.SKN AK.SLK AK.SWD AK.VRDI AK.WAT6 AK.WRH AT.PMR
AV.SPCP AV.STLK IU.COLA
Filtering commands used:
cut o DIST/3.4 -40 o DIST/3.4 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 5.96e+22 dyne-cm
Mw = 4.45
Z = 45 km
Plane Strike Dip Rake
NP1 190 60 -90
NP2 10 30 -90
Principal Axes:
Axis Value Plunge Azimuth
T 5.96e+22 15 280
N 0.00e+00 -0 190
P -5.96e+22 75 100
Moment Tensor: (dyne-cm)
Component Value
Mxx 1.56e+21
Mxy -8.82e+21
Mxz 5.17e+21
Myy 5.00e+22
Myz -2.93e+22
Mzz -5.16e+22
#########---##
###########--------###
############------------####
############--------------####
#############----------------#####
#############------------------#####
#############--------------------#####
##############--------------------######
# #########----------------------#####
## T #########----------------------######
## ########----------- ---------######
#############----------- P ---------######
#############----------- --------#######
############----------------------######
############---------------------#######
###########---------------------######
##########--------------------######
##########-----------------#######
########----------------######
########-------------#######
######----------######
###-----######
Global CMT Convention Moment Tensor:
R T P
-5.16e+22 5.17e+21 2.93e+22
5.17e+21 1.56e+21 8.82e+21
2.93e+22 8.82e+21 5.00e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230703144729/index.html
|
Regional Moment Tensor (Mwr) Moment 6.840e+15 N-m Magnitude 4.49 Mwr Depth 44.0 km Percent DC 95% Half Duration - Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 12 28 -94 NP2 197 62 -88 Principal Axes Axis Value Plunge Azimuth T 6.922e+15 N-m 17 285 N -0.167e+15 N-m 2 16 P -6.755e+15 N-m 73 113 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 180 50 90 3.63 0.1661
WVFGRD96 2.0 5 40 90 3.76 0.2164
WVFGRD96 3.0 185 55 85 3.83 0.2105
WVFGRD96 4.0 180 55 80 3.84 0.1976
WVFGRD96 5.0 95 30 -5 3.82 0.2121
WVFGRD96 6.0 100 30 5 3.83 0.2392
WVFGRD96 7.0 100 30 5 3.84 0.2616
WVFGRD96 8.0 105 25 15 3.91 0.2788
WVFGRD96 9.0 105 30 15 3.93 0.3002
WVFGRD96 10.0 105 30 15 3.94 0.3191
WVFGRD96 11.0 110 35 20 3.96 0.3361
WVFGRD96 12.0 110 35 20 3.97 0.3522
WVFGRD96 13.0 110 35 20 3.99 0.3658
WVFGRD96 14.0 110 35 20 4.00 0.3778
WVFGRD96 15.0 110 35 20 4.01 0.3879
WVFGRD96 16.0 110 35 20 4.03 0.3966
WVFGRD96 17.0 110 35 20 4.04 0.4038
WVFGRD96 18.0 110 40 15 4.06 0.4099
WVFGRD96 19.0 105 40 10 4.07 0.4162
WVFGRD96 20.0 105 40 10 4.09 0.4212
WVFGRD96 21.0 105 40 10 4.10 0.4247
WVFGRD96 22.0 105 40 10 4.12 0.4282
WVFGRD96 23.0 105 35 5 4.13 0.4307
WVFGRD96 24.0 65 35 -20 4.12 0.4365
WVFGRD96 25.0 65 35 -20 4.14 0.4474
WVFGRD96 26.0 65 35 -25 4.15 0.4582
WVFGRD96 27.0 65 35 -25 4.17 0.4689
WVFGRD96 28.0 60 35 -30 4.18 0.4793
WVFGRD96 29.0 55 30 -40 4.19 0.4919
WVFGRD96 30.0 50 25 -50 4.20 0.5049
WVFGRD96 31.0 45 25 -55 4.21 0.5192
WVFGRD96 32.0 40 25 -60 4.22 0.5330
WVFGRD96 33.0 35 25 -65 4.23 0.5475
WVFGRD96 34.0 30 25 -75 4.24 0.5609
WVFGRD96 35.0 10 25 -100 4.26 0.5753
WVFGRD96 36.0 10 25 -100 4.27 0.5892
WVFGRD96 37.0 10 25 -100 4.28 0.6003
WVFGRD96 38.0 5 25 -100 4.28 0.6087
WVFGRD96 39.0 5 30 -100 4.30 0.6179
WVFGRD96 40.0 195 65 -85 4.41 0.6205
WVFGRD96 41.0 195 65 -85 4.42 0.6255
WVFGRD96 42.0 10 25 -95 4.43 0.6284
WVFGRD96 43.0 190 60 -90 4.44 0.6289
WVFGRD96 44.0 10 30 -90 4.44 0.6294
WVFGRD96 45.0 10 30 -90 4.45 0.6305
WVFGRD96 46.0 10 30 -90 4.46 0.6279
WVFGRD96 47.0 10 30 -90 4.46 0.6254
WVFGRD96 48.0 190 60 -90 4.47 0.6209
WVFGRD96 49.0 10 30 -90 4.47 0.6155
WVFGRD96 50.0 10 30 -90 4.48 0.6090
WVFGRD96 51.0 190 60 -90 4.48 0.6008
WVFGRD96 52.0 15 30 -85 4.49 0.5936
WVFGRD96 53.0 15 30 -85 4.49 0.5839
WVFGRD96 54.0 190 60 -90 4.49 0.5743
WVFGRD96 55.0 15 30 -85 4.49 0.5647
WVFGRD96 56.0 20 30 -80 4.50 0.5530
WVFGRD96 57.0 15 30 -85 4.50 0.5431
WVFGRD96 58.0 15 30 -80 4.50 0.5313
WVFGRD96 59.0 15 30 -80 4.50 0.5201
The best solution is
WVFGRD96 45.0 10 30 -90 4.45 0.6305
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00