Location

Location ANSS

The ANSS event ID is ak0238ghjqxs and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0238ghjqxs/executive.

2023/07/03 11:19:24 63.120 -150.919 119.1 3.5 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2023/07/03 11:19:24:0  63.12 -150.92 119.1 3.5 Alaska
 
 Stations used:
   AK.BPAW AK.CAST AK.CCB AK.CUT AK.DHY AK.FIRE AK.GHO AK.H21K 
   AK.H22K AK.I21K AK.J19K AK.J20K AK.K20K AK.KNK AK.L19K 
   AK.L20K AK.L22K AK.M19K AK.MCK AK.PAX AK.PPLA AK.RND AK.SAW 
   AK.SCM AK.SKN AK.WAT6 AK.WRH AT.PMR IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.5 -40 o DIST/3.5 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 6.10e+21 dyne-cm
  Mw = 3.79 
  Z  = 124 km
  Plane   Strike  Dip  Rake
   NP1      217    50    94
   NP2       30    40    85
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.10e+21     84     156
    N   0.00e+00      3      34
    P  -6.10e+21      5     304

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.79e+21
       Mxy     2.76e+21
       Mxz    -8.80e+20
       Myy    -4.19e+21
       Myz     7.10e+20
       Mzz     5.98e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              -------------------#######--           
             ----------------############--          
             -------------###############----        
           P -----------##################----       
         -   ---------####################-----      
        ------------######################------     
        -----------#######################------     
       -----------########################-------    
       ----------##########   ############-------    
       ---------########### T ###########--------    
       --------############   ##########---------    
        -------#########################--------     
        -------########################---------     
         -----#######################----------      
          ----######################----------       
           ---####################-----------        
             --#################-----------          
              -##############-------------           
                 #######---------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.98e+21  -8.80e+20  -7.10e+20 
 -8.80e+20  -1.79e+21  -2.76e+21 
 -7.10e+20  -2.76e+21  -4.19e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230703111924/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 30
      DIP = 40
     RAKE = 85
       MW = 3.79
       HS = 124.0

The NDK file is 20230703111924.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.5 -40 o DIST/3.5 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   225    45   -90   2.98 0.1801
WVFGRD96    4.0   265    80   -60   3.01 0.1550
WVFGRD96    6.0   100    80    65   3.02 0.1911
WVFGRD96    8.0   100    75    70   3.12 0.2185
WVFGRD96   10.0   105    65    75   3.16 0.2463
WVFGRD96   12.0   105    60    75   3.19 0.2606
WVFGRD96   14.0   265    35    60   3.22 0.2648
WVFGRD96   16.0   265    35    60   3.24 0.2600
WVFGRD96   18.0   270    35    65   3.25 0.2500
WVFGRD96   20.0   260    40    55   3.28 0.2362
WVFGRD96   22.0   265    40    55   3.30 0.2204
WVFGRD96   24.0   260    45    50   3.31 0.2049
WVFGRD96   26.0   275    70   -35   3.37 0.1974
WVFGRD96   28.0   270    70   -45   3.37 0.1912
WVFGRD96   30.0   270    60   -45   3.38 0.1895
WVFGRD96   32.0   250    45   -60   3.38 0.2023
WVFGRD96   34.0   245    45   -65   3.41 0.2346
WVFGRD96   36.0   240    45   -70   3.43 0.2571
WVFGRD96   38.0   245    45   -70   3.45 0.2687
WVFGRD96   40.0   275    50   -80   3.56 0.2637
WVFGRD96   42.0   275    50   -80   3.60 0.2680
WVFGRD96   44.0   275    50   -80   3.62 0.2641
WVFGRD96   46.0   275    50   -80   3.63 0.2571
WVFGRD96   48.0   280    50   -80   3.64 0.2483
WVFGRD96   50.0   280    50   -80   3.64 0.2405
WVFGRD96   52.0   175    50    65   3.62 0.2349
WVFGRD96   54.0   185    45    65   3.64 0.2600
WVFGRD96   56.0   195    40    70   3.65 0.2816
WVFGRD96   58.0   205    40    80   3.67 0.3070
WVFGRD96   60.0   210    40    85   3.68 0.3312
WVFGRD96   62.0    40    50    95   3.68 0.3526
WVFGRD96   64.0    40    45    85   3.69 0.3705
WVFGRD96   66.0    40    45    85   3.70 0.3869
WVFGRD96   68.0    40    45    85   3.70 0.4012
WVFGRD96   70.0    40    45    85   3.70 0.4146
WVFGRD96   72.0    35    45    80   3.71 0.4268
WVFGRD96   74.0    35    45    85   3.71 0.4386
WVFGRD96   76.0    35    45    85   3.71 0.4501
WVFGRD96   78.0    35    45    85   3.71 0.4611
WVFGRD96   80.0    35    45    80   3.72 0.4710
WVFGRD96   82.0    35    45    80   3.72 0.4794
WVFGRD96   84.0    35    45    85   3.72 0.4871
WVFGRD96   86.0    35    45    85   3.72 0.4950
WVFGRD96   88.0    35    45    85   3.73 0.5018
WVFGRD96   90.0    30    45    80   3.73 0.5074
WVFGRD96   92.0    30    45    80   3.74 0.5129
WVFGRD96   94.0    35    40    85   3.74 0.5194
WVFGRD96   96.0    35    40    85   3.74 0.5260
WVFGRD96   98.0    35    40    85   3.75 0.5314
WVFGRD96  100.0    35    40    85   3.75 0.5362
WVFGRD96  102.0    35    40    85   3.75 0.5396
WVFGRD96  104.0    30    40    85   3.76 0.5434
WVFGRD96  106.0    35    40    85   3.76 0.5465
WVFGRD96  108.0    30    40    85   3.76 0.5494
WVFGRD96  110.0    30    40    85   3.77 0.5513
WVFGRD96  112.0    30    40    85   3.77 0.5546
WVFGRD96  114.0    30    40    85   3.77 0.5576
WVFGRD96  116.0    30    40    85   3.78 0.5576
WVFGRD96  118.0    30    40    85   3.78 0.5602
WVFGRD96  120.0    30    40    85   3.78 0.5608
WVFGRD96  122.0    30    40    85   3.79 0.5616
WVFGRD96  124.0    30    40    85   3.79 0.5631
WVFGRD96  126.0    30    40    85   3.79 0.5630
WVFGRD96  128.0    30    40    85   3.80 0.5629
WVFGRD96  130.0    30    40    85   3.80 0.5628
WVFGRD96  132.0    30    40    80   3.80 0.5623
WVFGRD96  134.0    30    40    80   3.81 0.5608
WVFGRD96  136.0    30    40    80   3.81 0.5609
WVFGRD96  138.0    30    40    80   3.81 0.5590
WVFGRD96  140.0    25    40    75   3.82 0.5587
WVFGRD96  142.0    25    40    75   3.82 0.5559
WVFGRD96  144.0    25    40    75   3.82 0.5571
WVFGRD96  146.0    25    40    75   3.82 0.5539
WVFGRD96  148.0    25    40    75   3.83 0.5543

The best solution is

WVFGRD96  124.0    30    40    85   3.79 0.5631

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.5 -40 o DIST/3.5 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Tue Apr 23 12:47:48 AM CDT 2024