Location

Location ANSS

The ANSS event ID is ci40230055 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ci40230055/executive.

2023/05/21 03:26:29 37.284 -117.584 5.3 4.26 California

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2023/05/21 03:26:29:0  37.28 -117.58   5.3 4.3 California
 
 Stations used:
   AE.W13A BK.HELL BK.MMI BK.OVRO BK.WELL BK.WINE BK.YUBA 
   CI.BCW CI.BEL CI.BFS CI.CCC CI.CSH CI.CTW CI.DAN CI.DSC 
   CI.DTP CI.ELS2 CI.FUR CI.GRA CI.GSC CI.HHL CI.IRM CI.ISA 
   CI.LRL CI.LUC2 CI.MSC CI.MTP CI.NEE2 CI.OSI CI.PALA CI.PASC 
   CI.RAG CI.SBB2 CI.SHO CI.TEH CI.TPO CI.WGR GS.MCA04 II.PFO 
   IM.NV31 NN.BEK NN.DIX NN.GMN NN.GWY NN.KVN NN.LHV NN.MPK 
   NN.PNT NN.PRN NN.PYM2 NN.Q09A NN.REDF NN.SHP NN.UNVG SN.TPW 
   US.ELK US.TPNV UU.CCUT UU.FOR1 UU.PSUT UU.SZCU UU.VRUT 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 2.34e+22 dyne-cm
  Mw = 4.18 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      199    46   -80
   NP2        5    45   -100
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.34e+22      0     282
    N   0.00e+00      7      12
    P  -2.34e+22     83     189

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     6.75e+20
       Mxy    -4.84e+21
       Mxz     2.87e+21
       Myy     2.24e+22
       Myz     2.51e+20
       Mzz    -2.31e+22
                                                     
                                                     
                                                     
                                                     
                     ###########--#                  
                 ############-----#####              
              ############---------#######           
             ###########------------#######          
           ###########---------------########        
          ###########-----------------########       
         ###########------------------#########      
        ###########--------------------#########     
         #########---------------------#########     
       T ########----------------------##########    
         ########----------------------##########    
       #########----------   ----------##########    
       #########---------- P ----------##########    
        ########----------   ----------#########     
        ########----------------------##########     
         #######----------------------#########      
          ######---------------------#########       
           ######-------------------#########        
             #####-----------------########          
              ####---------------#########           
                 ###-----------########              
                     --------######                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -2.31e+22   2.87e+21  -2.51e+20 
  2.87e+21   6.75e+20   4.84e+21 
 -2.51e+20   4.84e+21   2.24e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230521032629/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 5
      DIP = 45
     RAKE = -100
       MW = 4.18
       HS = 8.0

The NDK file is 20230521032629.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
CI
NC
 USGS/SLU Moment Tensor Solution
 ENS  2023/05/21 03:26:29:0  37.28 -117.58   5.3 4.3 California
 
 Stations used:
   AE.W13A BK.HELL BK.MMI BK.OVRO BK.WELL BK.WINE BK.YUBA 
   CI.BCW CI.BEL CI.BFS CI.CCC CI.CSH CI.CTW CI.DAN CI.DSC 
   CI.DTP CI.ELS2 CI.FUR CI.GRA CI.GSC CI.HHL CI.IRM CI.ISA 
   CI.LRL CI.LUC2 CI.MSC CI.MTP CI.NEE2 CI.OSI CI.PALA CI.PASC 
   CI.RAG CI.SBB2 CI.SHO CI.TEH CI.TPO CI.WGR GS.MCA04 II.PFO 
   IM.NV31 NN.BEK NN.DIX NN.GMN NN.GWY NN.KVN NN.LHV NN.MPK 
   NN.PNT NN.PRN NN.PYM2 NN.Q09A NN.REDF NN.SHP NN.UNVG SN.TPW 
   US.ELK US.TPNV UU.CCUT UU.FOR1 UU.PSUT UU.SZCU UU.VRUT 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 2.34e+22 dyne-cm
  Mw = 4.18 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      199    46   -80
   NP2        5    45   -100
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.34e+22      0     282
    N   0.00e+00      7      12
    P  -2.34e+22     83     189

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     6.75e+20
       Mxy    -4.84e+21
       Mxz     2.87e+21
       Myy     2.24e+22
       Myz     2.51e+20
       Mzz    -2.31e+22
                                                     
                                                     
                                                     
                                                     
                     ###########--#                  
                 ############-----#####              
              ############---------#######           
             ###########------------#######          
           ###########---------------########        
          ###########-----------------########       
         ###########------------------#########      
        ###########--------------------#########     
         #########---------------------#########     
       T ########----------------------##########    
         ########----------------------##########    
       #########----------   ----------##########    
       #########---------- P ----------##########    
        ########----------   ----------#########     
        ########----------------------##########     
         #######----------------------#########      
          ######---------------------#########       
           ######-------------------#########        
             #####-----------------########          
              ####---------------#########           
                 ###-----------########              
                     --------######                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -2.31e+22   2.87e+21  -2.51e+20 
  2.87e+21   6.75e+20   4.84e+21 
 -2.51e+20   4.84e+21   2.24e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230521032629/index.html
	
Moment Tensor (TMTS)
Moment 3.044e+15 N-m
Magnitude 4.26
Depth 8.0 km
Percent DC 92%
Half Duration -
Catalog CI
Data Source CI 2
Contributor CI 2

Nodal Planes
Plane Strike Dip Rake
NP1 14 48 -84
NP2 185 42 -96

Principal Axes
Axis Value Plunge Azimuth
T 3.105e+15 N-m 3 100
N -0.127e+15 N-m 4 190
P -2.978e+15 N-m 85 335

        
ontributed by NC 3 last updated 2023-05-21 07:11:42 (UTC)
The data below are the most preferred data available
The data below have NOT been reviewed by a scientist.
Catalog NC
Data Source NC 3
Contributor NC 3

Nodal Planes
Plane Strike Dip Rake
NP1 342 81 160
NP2 75 70 10

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    55    75   -25   3.77 0.3498
WVFGRD96    2.0   235    85   -40   3.92 0.4162
WVFGRD96    3.0   235    85   -50   3.99 0.4576
WVFGRD96    4.0   225    65   -45   4.01 0.5008
WVFGRD96    5.0   215    50   -60   4.07 0.5563
WVFGRD96    6.0   220    50   -50   4.08 0.5809
WVFGRD96    7.0   220    50   -50   4.09 0.5808
WVFGRD96    8.0     5    45  -100   4.18 0.6036
WVFGRD96    9.0   220    50   -50   4.14 0.5764
WVFGRD96   10.0   225    55   -40   4.13 0.5498
WVFGRD96   11.0   230    60   -30   4.12 0.5283
WVFGRD96   12.0   235    70   -20   4.12 0.5110
WVFGRD96   13.0   235    75   -20   4.12 0.4939
WVFGRD96   14.0   235    75   -15   4.13 0.4785
WVFGRD96   15.0   235    80   -15   4.14 0.4634
WVFGRD96   16.0   235    80   -15   4.15 0.4484
WVFGRD96   17.0   235    80   -15   4.15 0.4340
WVFGRD96   18.0   235    80   -15   4.16 0.4205
WVFGRD96   19.0   240    85   -10   4.16 0.4088
WVFGRD96   20.0   240    85   -10   4.16 0.3986
WVFGRD96   21.0   240    85   -10   4.17 0.3887
WVFGRD96   22.0   240    80   -10   4.18 0.3792
WVFGRD96   23.0   240    80   -10   4.18 0.3711
WVFGRD96   24.0   240    80   -10   4.19 0.3634
WVFGRD96   25.0   240    85   -10   4.19 0.3564
WVFGRD96   26.0   240    85   -10   4.20 0.3501
WVFGRD96   27.0    60    90    10   4.20 0.3444
WVFGRD96   28.0    60    80    10   4.21 0.3389
WVFGRD96   29.0    60    80    10   4.22 0.3341

The best solution is

WVFGRD96    8.0     5    45  -100   4.18 0.6036

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Mon Apr 22 11:42:01 PM CDT 2024