The ANSS event ID is ak0235xecrhs and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0235xecrhs/executive.
2023/05/09 03:40:56 63.656 -149.651 117.5 4.4 Alaska
USGS/SLU Moment Tensor Solution ENS 2023/05/09 03:40:56:0 63.66 -149.65 117.5 4.4 Alaska Stations used: AK.BPAW AK.CAST AK.CCB AK.DHY AK.GHO AK.H22K AK.H23K AK.H24K AK.HDA AK.I23K AK.J20K AK.KNK AK.KTH AK.L19K AK.L22K AK.M19K AK.MCK AK.MLY AK.NEA2 AK.PAX AK.POKR AK.PWL AK.RIDG AK.RND AK.SCM AK.SKN AK.WAT6 AK.WRH AT.PMR AV.STLK IU.COLA Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 1.66e+22 dyne-cm Mw = 4.08 Z = 120 km Plane Strike Dip Rake NP1 115 85 70 NP2 12 21 166 Principal Axes: Axis Value Plunge Azimuth T 1.66e+22 46 4 N 0.00e+00 20 117 P -1.66e+22 37 223 Moment Tensor: (dyne-cm) Component Value Mxx 2.11e+21 Mxy -4.67e+21 Mxz 1.41e+22 Myy -4.82e+21 Myz 6.04e+21 Mzz 2.71e+21 #############- ####################-- #########################--- ############################-- ################ ############--- ################# T #############--- -################# ##############--- -----###############################---- --------#############################--- ------------##########################---- ----------------######################---- --------------------##################---- ------------------------#############----- ---------------------------#########---- --------------------------------###----- --------- ----------------------##-- -------- P ---------------------#### ------- -------------------##### --------------------------#### -----------------------##### -----------------##### ---------##### Global CMT Convention Moment Tensor: R T P 2.71e+21 1.41e+22 -6.04e+21 1.41e+22 2.11e+21 4.67e+21 -6.04e+21 4.67e+21 -4.82e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230509034056/index.html |
STK = 115 DIP = 85 RAKE = 70 MW = 4.08 HS = 120.0
The NDK file is 20230509034056.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 50 75 -10 3.03 0.1261 WVFGRD96 4.0 50 90 -30 3.15 0.1520 WVFGRD96 6.0 230 70 15 3.21 0.1736 WVFGRD96 8.0 235 65 25 3.30 0.1948 WVFGRD96 10.0 230 65 15 3.33 0.2064 WVFGRD96 12.0 230 65 15 3.37 0.2161 WVFGRD96 14.0 230 65 20 3.40 0.2224 WVFGRD96 16.0 230 65 20 3.43 0.2255 WVFGRD96 18.0 230 65 20 3.45 0.2270 WVFGRD96 20.0 230 65 20 3.47 0.2258 WVFGRD96 22.0 230 65 20 3.49 0.2223 WVFGRD96 24.0 230 60 20 3.51 0.2166 WVFGRD96 26.0 230 60 15 3.52 0.2108 WVFGRD96 28.0 230 55 15 3.53 0.2059 WVFGRD96 30.0 230 55 15 3.55 0.2016 WVFGRD96 32.0 230 55 15 3.56 0.1977 WVFGRD96 34.0 215 45 15 3.59 0.1954 WVFGRD96 36.0 215 45 15 3.60 0.1966 WVFGRD96 38.0 210 50 15 3.62 0.1978 WVFGRD96 40.0 210 40 15 3.72 0.1995 WVFGRD96 42.0 210 45 15 3.73 0.1961 WVFGRD96 44.0 205 65 25 3.73 0.1971 WVFGRD96 46.0 205 65 25 3.74 0.2005 WVFGRD96 48.0 205 65 25 3.76 0.2052 WVFGRD96 50.0 200 70 20 3.77 0.2099 WVFGRD96 52.0 200 70 20 3.78 0.2145 WVFGRD96 54.0 200 70 20 3.80 0.2197 WVFGRD96 56.0 140 70 -20 3.84 0.2343 WVFGRD96 58.0 325 90 -25 3.83 0.2616 WVFGRD96 60.0 140 50 10 3.88 0.2944 WVFGRD96 62.0 140 55 15 3.89 0.3400 WVFGRD96 64.0 140 60 25 3.90 0.3889 WVFGRD96 66.0 140 65 35 3.91 0.4399 WVFGRD96 68.0 135 70 40 3.93 0.4891 WVFGRD96 70.0 115 80 70 3.96 0.5287 WVFGRD96 72.0 115 80 70 3.97 0.5689 WVFGRD96 74.0 120 80 70 3.98 0.5939 WVFGRD96 76.0 120 80 70 3.99 0.6131 WVFGRD96 78.0 120 80 70 3.99 0.6309 WVFGRD96 80.0 120 80 70 4.00 0.6489 WVFGRD96 82.0 120 80 70 4.01 0.6647 WVFGRD96 84.0 120 80 70 4.01 0.6792 WVFGRD96 86.0 120 80 70 4.02 0.6937 WVFGRD96 88.0 120 80 70 4.03 0.7051 WVFGRD96 90.0 120 80 70 4.03 0.7166 WVFGRD96 92.0 120 80 70 4.04 0.7258 WVFGRD96 94.0 120 80 70 4.04 0.7351 WVFGRD96 96.0 120 80 70 4.04 0.7425 WVFGRD96 98.0 115 85 70 4.05 0.7510 WVFGRD96 100.0 115 85 70 4.05 0.7572 WVFGRD96 102.0 115 85 70 4.05 0.7627 WVFGRD96 104.0 115 85 70 4.06 0.7677 WVFGRD96 106.0 115 85 70 4.06 0.7725 WVFGRD96 108.0 115 85 70 4.06 0.7753 WVFGRD96 110.0 115 85 70 4.07 0.7791 WVFGRD96 112.0 115 85 70 4.07 0.7802 WVFGRD96 114.0 115 85 70 4.07 0.7831 WVFGRD96 116.0 115 85 70 4.08 0.7833 WVFGRD96 118.0 115 85 70 4.08 0.7848 WVFGRD96 120.0 115 85 70 4.08 0.7849 WVFGRD96 122.0 115 85 70 4.08 0.7843 WVFGRD96 124.0 115 85 70 4.08 0.7843 WVFGRD96 126.0 115 85 70 4.09 0.7827 WVFGRD96 128.0 115 85 70 4.09 0.7813 WVFGRD96 130.0 290 90 -65 4.09 0.7733 WVFGRD96 132.0 290 90 -65 4.09 0.7716 WVFGRD96 134.0 290 90 -65 4.10 0.7709 WVFGRD96 136.0 115 85 65 4.10 0.7729 WVFGRD96 138.0 290 90 -65 4.10 0.7664 WVFGRD96 140.0 290 90 -65 4.10 0.7623 WVFGRD96 142.0 115 85 65 4.10 0.7633 WVFGRD96 144.0 115 85 65 4.10 0.7599 WVFGRD96 146.0 115 85 65 4.10 0.7548 WVFGRD96 148.0 115 85 65 4.10 0.7514
The best solution is
WVFGRD96 120.0 115 85 70 4.08 0.7849
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00