Location

Location ANSS

The ANSS event ID is ak0235xecrhs and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0235xecrhs/executive.

2023/05/09 03:40:56 63.656 -149.651 117.5 4.4 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2023/05/09 03:40:56:0  63.66 -149.65 117.5 4.4 Alaska
 
 Stations used:
   AK.BPAW AK.CAST AK.CCB AK.DHY AK.GHO AK.H22K AK.H23K 
   AK.H24K AK.HDA AK.I23K AK.J20K AK.KNK AK.KTH AK.L19K 
   AK.L22K AK.M19K AK.MCK AK.MLY AK.NEA2 AK.PAX AK.POKR AK.PWL 
   AK.RIDG AK.RND AK.SCM AK.SKN AK.WAT6 AK.WRH AT.PMR AV.STLK 
   IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 1.66e+22 dyne-cm
  Mw = 4.08 
  Z  = 120 km
  Plane   Strike  Dip  Rake
   NP1      115    85    70
   NP2       12    21   166
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.66e+22     46       4
    N   0.00e+00     20     117
    P  -1.66e+22     37     223

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.11e+21
       Mxy    -4.67e+21
       Mxz     1.41e+22
       Myy    -4.82e+21
       Myz     6.04e+21
       Mzz     2.71e+21
                                                     
                                                     
                                                     
                                                     
                     #############-                  
                 ####################--              
              #########################---           
             ############################--          
           ################   ############---        
          ################# T #############---       
         -#################   ##############---      
        -----###############################----     
        --------#############################---     
       ------------##########################----    
       ----------------######################----    
       --------------------##################----    
       ------------------------#############-----    
        ---------------------------#########----     
        --------------------------------###-----     
         ---------   ----------------------##--      
          -------- P ---------------------####       
           -------   -------------------#####        
             --------------------------####          
              -----------------------#####           
                 -----------------#####              
                     ---------#####                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.71e+21   1.41e+22  -6.04e+21 
  1.41e+22   2.11e+21   4.67e+21 
 -6.04e+21   4.67e+21  -4.82e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230509034056/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 115
      DIP = 85
     RAKE = 70
       MW = 4.08
       HS = 120.0

The NDK file is 20230509034056.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0    50    75   -10   3.03 0.1261
WVFGRD96    4.0    50    90   -30   3.15 0.1520
WVFGRD96    6.0   230    70    15   3.21 0.1736
WVFGRD96    8.0   235    65    25   3.30 0.1948
WVFGRD96   10.0   230    65    15   3.33 0.2064
WVFGRD96   12.0   230    65    15   3.37 0.2161
WVFGRD96   14.0   230    65    20   3.40 0.2224
WVFGRD96   16.0   230    65    20   3.43 0.2255
WVFGRD96   18.0   230    65    20   3.45 0.2270
WVFGRD96   20.0   230    65    20   3.47 0.2258
WVFGRD96   22.0   230    65    20   3.49 0.2223
WVFGRD96   24.0   230    60    20   3.51 0.2166
WVFGRD96   26.0   230    60    15   3.52 0.2108
WVFGRD96   28.0   230    55    15   3.53 0.2059
WVFGRD96   30.0   230    55    15   3.55 0.2016
WVFGRD96   32.0   230    55    15   3.56 0.1977
WVFGRD96   34.0   215    45    15   3.59 0.1954
WVFGRD96   36.0   215    45    15   3.60 0.1966
WVFGRD96   38.0   210    50    15   3.62 0.1978
WVFGRD96   40.0   210    40    15   3.72 0.1995
WVFGRD96   42.0   210    45    15   3.73 0.1961
WVFGRD96   44.0   205    65    25   3.73 0.1971
WVFGRD96   46.0   205    65    25   3.74 0.2005
WVFGRD96   48.0   205    65    25   3.76 0.2052
WVFGRD96   50.0   200    70    20   3.77 0.2099
WVFGRD96   52.0   200    70    20   3.78 0.2145
WVFGRD96   54.0   200    70    20   3.80 0.2197
WVFGRD96   56.0   140    70   -20   3.84 0.2343
WVFGRD96   58.0   325    90   -25   3.83 0.2616
WVFGRD96   60.0   140    50    10   3.88 0.2944
WVFGRD96   62.0   140    55    15   3.89 0.3400
WVFGRD96   64.0   140    60    25   3.90 0.3889
WVFGRD96   66.0   140    65    35   3.91 0.4399
WVFGRD96   68.0   135    70    40   3.93 0.4891
WVFGRD96   70.0   115    80    70   3.96 0.5287
WVFGRD96   72.0   115    80    70   3.97 0.5689
WVFGRD96   74.0   120    80    70   3.98 0.5939
WVFGRD96   76.0   120    80    70   3.99 0.6131
WVFGRD96   78.0   120    80    70   3.99 0.6309
WVFGRD96   80.0   120    80    70   4.00 0.6489
WVFGRD96   82.0   120    80    70   4.01 0.6647
WVFGRD96   84.0   120    80    70   4.01 0.6792
WVFGRD96   86.0   120    80    70   4.02 0.6937
WVFGRD96   88.0   120    80    70   4.03 0.7051
WVFGRD96   90.0   120    80    70   4.03 0.7166
WVFGRD96   92.0   120    80    70   4.04 0.7258
WVFGRD96   94.0   120    80    70   4.04 0.7351
WVFGRD96   96.0   120    80    70   4.04 0.7425
WVFGRD96   98.0   115    85    70   4.05 0.7510
WVFGRD96  100.0   115    85    70   4.05 0.7572
WVFGRD96  102.0   115    85    70   4.05 0.7627
WVFGRD96  104.0   115    85    70   4.06 0.7677
WVFGRD96  106.0   115    85    70   4.06 0.7725
WVFGRD96  108.0   115    85    70   4.06 0.7753
WVFGRD96  110.0   115    85    70   4.07 0.7791
WVFGRD96  112.0   115    85    70   4.07 0.7802
WVFGRD96  114.0   115    85    70   4.07 0.7831
WVFGRD96  116.0   115    85    70   4.08 0.7833
WVFGRD96  118.0   115    85    70   4.08 0.7848
WVFGRD96  120.0   115    85    70   4.08 0.7849
WVFGRD96  122.0   115    85    70   4.08 0.7843
WVFGRD96  124.0   115    85    70   4.08 0.7843
WVFGRD96  126.0   115    85    70   4.09 0.7827
WVFGRD96  128.0   115    85    70   4.09 0.7813
WVFGRD96  130.0   290    90   -65   4.09 0.7733
WVFGRD96  132.0   290    90   -65   4.09 0.7716
WVFGRD96  134.0   290    90   -65   4.10 0.7709
WVFGRD96  136.0   115    85    65   4.10 0.7729
WVFGRD96  138.0   290    90   -65   4.10 0.7664
WVFGRD96  140.0   290    90   -65   4.10 0.7623
WVFGRD96  142.0   115    85    65   4.10 0.7633
WVFGRD96  144.0   115    85    65   4.10 0.7599
WVFGRD96  146.0   115    85    65   4.10 0.7548
WVFGRD96  148.0   115    85    65   4.10 0.7514

The best solution is

WVFGRD96  120.0   115    85    70   4.08 0.7849

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Mon Apr 22 11:24:45 PM CDT 2024