Location

Location ANSS

The ANSS event ID is tx2023gzjd and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/tx2023gzjd/executive.

2023/04/10 06:14:48 32.260 -101.931 6.0 3.8 Texas

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2023/04/10 06:14:48:0  32.26 -101.93   6.0 3.8 Texas
 
 Stations used:
   4O.MID02 GM.NMP02 GM.NMP41 GM.NMP44 N4.ABTX N4.MSTX TX.ALPN 
   TX.APMT TX.DKNS TX.MB01 TX.MB04 TX.MB06 TX.MB09 TX.MB12 
   TX.MNHN TX.ODSA TX.OZNA TX.PB05 TX.PB21 TX.PLPT TX.POST 
   TX.SAND TX.SGCY TX.SMWD TX.SN08 US.AMTX US.JCT 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.04 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 2.57e+21 dyne-cm
  Mw = 3.54 
  Z  = 5 km
  Plane   Strike  Dip  Rake
   NP1       73    67   -99
   NP2      275    25   -70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.57e+21     21     170
    N   0.00e+00      8      77
    P  -2.57e+21     67     326

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.90e+21
       Mxy    -2.05e+20
       Mxz    -1.62e+21
       Myy    -5.05e+19
       Myz     6.58e+20
       Mzz    -1.85e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############---#############           
             #####-------------------######          
           ####-------------------------#####        
          ###-----------------------------####       
         ##---------------------------------###      
        ##-------------   -------------------###     
        --------------- P ----------------------     
       #---------------   -------------------##--    
       ------------------------------------#####-    
       ---------------------------------#########    
       ------------------------------############    
        -------------------------###############     
        #------------------#####################     
         ######################################      
          ####################################       
           ##################################        
             ################   ###########          
              ############### T ##########           
                 ############   #######              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.85e+21  -1.62e+21  -6.58e+20 
 -1.62e+21   1.90e+21   2.05e+20 
 -6.58e+20   2.05e+20  -5.05e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230410061448/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 275
      DIP = 25
     RAKE = -70
       MW = 3.54
       HS = 5.0

The NDK file is 20230410061448.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2023/04/10 06:14:48:0  32.26 -101.93   6.0 3.8 Texas
 
 Stations used:
   4O.MID02 GM.NMP02 GM.NMP41 GM.NMP44 N4.ABTX N4.MSTX TX.ALPN 
   TX.APMT TX.DKNS TX.MB01 TX.MB04 TX.MB06 TX.MB09 TX.MB12 
   TX.MNHN TX.ODSA TX.OZNA TX.PB05 TX.PB21 TX.PLPT TX.POST 
   TX.SAND TX.SGCY TX.SMWD TX.SN08 US.AMTX US.JCT 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.04 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 2.57e+21 dyne-cm
  Mw = 3.54 
  Z  = 5 km
  Plane   Strike  Dip  Rake
   NP1       73    67   -99
   NP2      275    25   -70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.57e+21     21     170
    N   0.00e+00      8      77
    P  -2.57e+21     67     326

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.90e+21
       Mxy    -2.05e+20
       Mxz    -1.62e+21
       Myy    -5.05e+19
       Myz     6.58e+20
       Mzz    -1.85e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############---#############           
             #####-------------------######          
           ####-------------------------#####        
          ###-----------------------------####       
         ##---------------------------------###      
        ##-------------   -------------------###     
        --------------- P ----------------------     
       #---------------   -------------------##--    
       ------------------------------------#####-    
       ---------------------------------#########    
       ------------------------------############    
        -------------------------###############     
        #------------------#####################     
         ######################################      
          ####################################       
           ##################################        
             ################   ###########          
              ############### T ##########           
                 ############   #######              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.85e+21  -1.62e+21  -6.58e+20 
 -1.62e+21   1.90e+21   2.05e+20 
 -6.58e+20   2.05e+20  -5.05e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230410061448/index.html
	
Regional Moment Tensor (Mwr)
Moment 4.189e+14 N-m
Magnitude 3.68 Mwr
Depth 4.0 km
Percent DC 81%
Half Duration -
Catalog US
Data Source US 2
Contributor US 2

Nodal Planes
Plane Strike Dip Rake
NP1 270 28 -78
NP2 76 62 -96

Principal Axes
Axis Value Plunge Azimuth
T 4.382e+14 N-m 17 171
N -0.417e+14 N-m 6 79
P -3.965e+14 N-m 72 331

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.04 n 3 
lp c 0.08 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   280    40   -45   3.27 0.2718
WVFGRD96    2.0    95    70   -70   3.45 0.3334
WVFGRD96    3.0    75    70   -90   3.53 0.3961
WVFGRD96    4.0   280    25   -65   3.53 0.4369
WVFGRD96    5.0   275    25   -70   3.54 0.4495
WVFGRD96    6.0   285    30   -60   3.53 0.4444
WVFGRD96    7.0   285    30   -60   3.53 0.4297
WVFGRD96    8.0   280    30   -65   3.60 0.4295
WVFGRD96    9.0   285    30   -55   3.59 0.3986
WVFGRD96   10.0   295    35   -40   3.58 0.3706
WVFGRD96   11.0   305    40   -25   3.57 0.3476
WVFGRD96   12.0   305    40   -25   3.58 0.3290
WVFGRD96   13.0   310    45   -15   3.58 0.3129
WVFGRD96   14.0   310    45   -10   3.58 0.2979
WVFGRD96   15.0   310    45   -10   3.59 0.2842
WVFGRD96   16.0   310    45   -10   3.59 0.2721
WVFGRD96   17.0   310    45   -10   3.60 0.2604
WVFGRD96   18.0   315    45     0   3.60 0.2501
WVFGRD96   19.0   315    45     0   3.61 0.2406
WVFGRD96   20.0   315    45     0   3.61 0.2316
WVFGRD96   21.0   315    45     0   3.62 0.2233
WVFGRD96   22.0   310    40    -5   3.63 0.2156
WVFGRD96   23.0   310    45    -5   3.63 0.2092
WVFGRD96   24.0   310    45    -5   3.64 0.2036
WVFGRD96   25.0   310    45    -5   3.64 0.1989
WVFGRD96   26.0    55    65    50   3.64 0.1955
WVFGRD96   27.0    55    65    50   3.65 0.1970
WVFGRD96   28.0    50    70    40   3.66 0.1990
WVFGRD96   29.0    50    70    40   3.67 0.2012

The best solution is

WVFGRD96    5.0   275    25   -70   3.54 0.4495

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.04 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Mon Apr 22 11:05:56 PM CDT 2024