The ANSS event ID is ak0234f01qd2 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0234f01qd2/executive.
2023/04/06 14:20:29 63.046 -150.454 100.8 3.6 Alaska
USGS/SLU Moment Tensor Solution ENS 2023/04/06 14:20:29:0 63.05 -150.45 100.8 3.6 Alaska Stations used: AK.BPAW AK.CAST AK.CCB AK.CUT AK.DHY AK.GHO AK.HDA AK.I21K AK.KNK AK.L20K AK.L22K AK.MCK AK.MLY AK.NEA2 AK.PAX AK.POKR AK.RC01 AK.RND AK.SAW AK.SKN AK.WAT6 AK.WRH AT.PMR IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 7.00e+21 dyne-cm Mw = 3.83 Z = 114 km Plane Strike Dip Rake NP1 290 59 106 NP2 80 35 65 Principal Axes: Axis Value Plunge Azimuth T 7.00e+21 71 238 N 0.00e+00 14 101 P -7.00e+21 12 8 Moment Tensor: (dyne-cm) Component Value Mxx -6.36e+21 Mxy -5.75e+20 Mxz -2.56e+21 Myy 4.00e+20 Myz -2.01e+21 Mzz 5.96e+21 -------- --- ------------ P ------- --------------- ---------- ------------------------------ ---------------------------------- ------------------------------------ --#################------------------- #########################--------------- #############################----------- #################################--------# ###################################------# ############### ###################---## ############### T ####################-### ############## ####################-## --#################################----# --##############################------ ----#########################------- ------##################---------- ------------------------------ ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 5.96e+21 -2.56e+21 2.01e+21 -2.56e+21 -6.36e+21 5.75e+20 2.01e+21 5.75e+20 4.00e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230406142029/index.html |
STK = 80 DIP = 35 RAKE = 65 MW = 3.83 HS = 114.0
The NDK file is 20230406142029.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 105 50 -90 3.12 0.3185 WVFGRD96 4.0 110 55 -80 3.23 0.2737 WVFGRD96 6.0 310 20 -60 3.25 0.3339 WVFGRD96 8.0 305 20 -65 3.30 0.3628 WVFGRD96 10.0 310 25 -60 3.29 0.3748 WVFGRD96 12.0 320 30 -50 3.28 0.3814 WVFGRD96 14.0 325 35 -40 3.29 0.3862 WVFGRD96 16.0 330 40 -35 3.31 0.3888 WVFGRD96 18.0 330 40 -35 3.32 0.3887 WVFGRD96 20.0 125 65 -60 3.34 0.3860 WVFGRD96 22.0 215 40 30 3.38 0.3822 WVFGRD96 24.0 215 40 30 3.40 0.3835 WVFGRD96 26.0 215 40 30 3.42 0.3816 WVFGRD96 28.0 210 45 25 3.45 0.3760 WVFGRD96 30.0 210 45 25 3.47 0.3667 WVFGRD96 32.0 85 55 65 3.44 0.3569 WVFGRD96 34.0 80 55 60 3.46 0.3502 WVFGRD96 36.0 145 40 -45 3.47 0.3472 WVFGRD96 38.0 145 40 -45 3.49 0.3433 WVFGRD96 40.0 130 35 -60 3.61 0.3454 WVFGRD96 42.0 125 35 -65 3.63 0.3465 WVFGRD96 44.0 125 35 -65 3.65 0.3416 WVFGRD96 46.0 80 50 60 3.67 0.3350 WVFGRD96 48.0 80 45 60 3.68 0.3346 WVFGRD96 50.0 85 55 70 3.68 0.3335 WVFGRD96 52.0 85 55 70 3.70 0.3463 WVFGRD96 54.0 85 50 65 3.71 0.3591 WVFGRD96 56.0 85 50 65 3.72 0.3734 WVFGRD96 58.0 80 50 65 3.73 0.3864 WVFGRD96 60.0 80 50 60 3.74 0.4012 WVFGRD96 62.0 80 50 60 3.75 0.4145 WVFGRD96 64.0 80 50 60 3.75 0.4255 WVFGRD96 66.0 90 40 75 3.77 0.4437 WVFGRD96 68.0 90 40 75 3.77 0.4626 WVFGRD96 70.0 90 40 75 3.78 0.4789 WVFGRD96 72.0 90 40 75 3.78 0.4938 WVFGRD96 74.0 90 40 75 3.78 0.5066 WVFGRD96 76.0 90 40 75 3.78 0.5180 WVFGRD96 78.0 85 40 70 3.79 0.5281 WVFGRD96 80.0 85 40 70 3.79 0.5378 WVFGRD96 82.0 85 40 70 3.79 0.5457 WVFGRD96 84.0 80 40 65 3.79 0.5519 WVFGRD96 86.0 85 40 70 3.79 0.5588 WVFGRD96 88.0 80 40 65 3.79 0.5646 WVFGRD96 90.0 85 35 70 3.80 0.5692 WVFGRD96 92.0 85 35 70 3.80 0.5735 WVFGRD96 94.0 85 35 70 3.80 0.5777 WVFGRD96 96.0 80 35 65 3.81 0.5808 WVFGRD96 98.0 80 35 65 3.81 0.5842 WVFGRD96 100.0 80 35 65 3.81 0.5866 WVFGRD96 102.0 80 35 65 3.81 0.5892 WVFGRD96 104.0 80 35 65 3.81 0.5912 WVFGRD96 106.0 80 35 65 3.82 0.5922 WVFGRD96 108.0 80 35 65 3.82 0.5942 WVFGRD96 110.0 80 35 65 3.82 0.5940 WVFGRD96 112.0 80 35 65 3.82 0.5953 WVFGRD96 114.0 80 35 65 3.83 0.5955 WVFGRD96 116.0 80 35 65 3.83 0.5951 WVFGRD96 118.0 80 35 65 3.83 0.5950 WVFGRD96 120.0 80 35 65 3.83 0.5935 WVFGRD96 122.0 80 35 65 3.84 0.5932 WVFGRD96 124.0 80 35 65 3.84 0.5920 WVFGRD96 126.0 80 35 65 3.84 0.5910 WVFGRD96 128.0 85 35 70 3.84 0.5894 WVFGRD96 130.0 85 35 70 3.85 0.5876 WVFGRD96 132.0 85 35 70 3.85 0.5859 WVFGRD96 134.0 85 35 70 3.85 0.5837 WVFGRD96 136.0 85 35 70 3.85 0.5820 WVFGRD96 138.0 85 35 70 3.86 0.5792 WVFGRD96 140.0 85 35 70 3.86 0.5778 WVFGRD96 142.0 85 35 70 3.86 0.5742 WVFGRD96 144.0 85 35 70 3.86 0.5728 WVFGRD96 146.0 85 35 70 3.87 0.5697 WVFGRD96 148.0 85 35 70 3.87 0.5673
The best solution is
WVFGRD96 114.0 80 35 65 3.83 0.5955
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00