Location

Location ANSS

The ANSS event ID is ak0234f01qd2 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0234f01qd2/executive.

2023/04/06 14:20:29 63.046 -150.454 100.8 3.6 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2023/04/06 14:20:29:0  63.05 -150.45 100.8 3.6 Alaska
 
 Stations used:
   AK.BPAW AK.CAST AK.CCB AK.CUT AK.DHY AK.GHO AK.HDA AK.I21K 
   AK.KNK AK.L20K AK.L22K AK.MCK AK.MLY AK.NEA2 AK.PAX AK.POKR 
   AK.RC01 AK.RND AK.SAW AK.SKN AK.WAT6 AK.WRH AT.PMR IM.IL31 
   IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 7.00e+21 dyne-cm
  Mw = 3.83 
  Z  = 114 km
  Plane   Strike  Dip  Rake
   NP1      290    59   106
   NP2       80    35    65
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.00e+21     71     238
    N   0.00e+00     14     101
    P  -7.00e+21     12       8

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -6.36e+21
       Mxy    -5.75e+20
       Mxz    -2.56e+21
       Myy     4.00e+20
       Myz    -2.01e+21
       Mzz     5.96e+21
                                                     
                                                     
                                                     
                                                     
                     --------   ---                  
                 ------------ P -------              
              ---------------   ----------           
             ------------------------------          
           ----------------------------------        
          ------------------------------------       
         --#################-------------------      
        #########################---------------     
        #############################-----------     
       #################################--------#    
       ###################################------#    
       ###############   ###################---##    
       ############### T ####################-###    
        ##############   ####################-##     
        --#################################----#     
         --##############################------      
          ----#########################-------       
           ------##################----------        
             ------------------------------          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.96e+21  -2.56e+21   2.01e+21 
 -2.56e+21  -6.36e+21   5.75e+20 
  2.01e+21   5.75e+20   4.00e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230406142029/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 80
      DIP = 35
     RAKE = 65
       MW = 3.83
       HS = 114.0

The NDK file is 20230406142029.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
br c 0.12 0.25 n 4 p 2
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   105    50   -90   3.12 0.3185
WVFGRD96    4.0   110    55   -80   3.23 0.2737
WVFGRD96    6.0   310    20   -60   3.25 0.3339
WVFGRD96    8.0   305    20   -65   3.30 0.3628
WVFGRD96   10.0   310    25   -60   3.29 0.3748
WVFGRD96   12.0   320    30   -50   3.28 0.3814
WVFGRD96   14.0   325    35   -40   3.29 0.3862
WVFGRD96   16.0   330    40   -35   3.31 0.3888
WVFGRD96   18.0   330    40   -35   3.32 0.3887
WVFGRD96   20.0   125    65   -60   3.34 0.3860
WVFGRD96   22.0   215    40    30   3.38 0.3822
WVFGRD96   24.0   215    40    30   3.40 0.3835
WVFGRD96   26.0   215    40    30   3.42 0.3816
WVFGRD96   28.0   210    45    25   3.45 0.3760
WVFGRD96   30.0   210    45    25   3.47 0.3667
WVFGRD96   32.0    85    55    65   3.44 0.3569
WVFGRD96   34.0    80    55    60   3.46 0.3502
WVFGRD96   36.0   145    40   -45   3.47 0.3472
WVFGRD96   38.0   145    40   -45   3.49 0.3433
WVFGRD96   40.0   130    35   -60   3.61 0.3454
WVFGRD96   42.0   125    35   -65   3.63 0.3465
WVFGRD96   44.0   125    35   -65   3.65 0.3416
WVFGRD96   46.0    80    50    60   3.67 0.3350
WVFGRD96   48.0    80    45    60   3.68 0.3346
WVFGRD96   50.0    85    55    70   3.68 0.3335
WVFGRD96   52.0    85    55    70   3.70 0.3463
WVFGRD96   54.0    85    50    65   3.71 0.3591
WVFGRD96   56.0    85    50    65   3.72 0.3734
WVFGRD96   58.0    80    50    65   3.73 0.3864
WVFGRD96   60.0    80    50    60   3.74 0.4012
WVFGRD96   62.0    80    50    60   3.75 0.4145
WVFGRD96   64.0    80    50    60   3.75 0.4255
WVFGRD96   66.0    90    40    75   3.77 0.4437
WVFGRD96   68.0    90    40    75   3.77 0.4626
WVFGRD96   70.0    90    40    75   3.78 0.4789
WVFGRD96   72.0    90    40    75   3.78 0.4938
WVFGRD96   74.0    90    40    75   3.78 0.5066
WVFGRD96   76.0    90    40    75   3.78 0.5180
WVFGRD96   78.0    85    40    70   3.79 0.5281
WVFGRD96   80.0    85    40    70   3.79 0.5378
WVFGRD96   82.0    85    40    70   3.79 0.5457
WVFGRD96   84.0    80    40    65   3.79 0.5519
WVFGRD96   86.0    85    40    70   3.79 0.5588
WVFGRD96   88.0    80    40    65   3.79 0.5646
WVFGRD96   90.0    85    35    70   3.80 0.5692
WVFGRD96   92.0    85    35    70   3.80 0.5735
WVFGRD96   94.0    85    35    70   3.80 0.5777
WVFGRD96   96.0    80    35    65   3.81 0.5808
WVFGRD96   98.0    80    35    65   3.81 0.5842
WVFGRD96  100.0    80    35    65   3.81 0.5866
WVFGRD96  102.0    80    35    65   3.81 0.5892
WVFGRD96  104.0    80    35    65   3.81 0.5912
WVFGRD96  106.0    80    35    65   3.82 0.5922
WVFGRD96  108.0    80    35    65   3.82 0.5942
WVFGRD96  110.0    80    35    65   3.82 0.5940
WVFGRD96  112.0    80    35    65   3.82 0.5953
WVFGRD96  114.0    80    35    65   3.83 0.5955
WVFGRD96  116.0    80    35    65   3.83 0.5951
WVFGRD96  118.0    80    35    65   3.83 0.5950
WVFGRD96  120.0    80    35    65   3.83 0.5935
WVFGRD96  122.0    80    35    65   3.84 0.5932
WVFGRD96  124.0    80    35    65   3.84 0.5920
WVFGRD96  126.0    80    35    65   3.84 0.5910
WVFGRD96  128.0    85    35    70   3.84 0.5894
WVFGRD96  130.0    85    35    70   3.85 0.5876
WVFGRD96  132.0    85    35    70   3.85 0.5859
WVFGRD96  134.0    85    35    70   3.85 0.5837
WVFGRD96  136.0    85    35    70   3.85 0.5820
WVFGRD96  138.0    85    35    70   3.86 0.5792
WVFGRD96  140.0    85    35    70   3.86 0.5778
WVFGRD96  142.0    85    35    70   3.86 0.5742
WVFGRD96  144.0    85    35    70   3.86 0.5728
WVFGRD96  146.0    85    35    70   3.87 0.5697
WVFGRD96  148.0    85    35    70   3.87 0.5673

The best solution is

WVFGRD96  114.0    80    35    65   3.83 0.5955

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Mon Apr 22 11:02:29 PM CDT 2024