The ANSS event ID is us7000jiqv and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us7000jiqv/executive.
2023/03/10 06:06:47 37.175 -104.734 5.6 4.3 Colorado
USGS/SLU Moment Tensor Solution
ENS 2023/03/10 06:06:47:0 37.17 -104.73 5.6 4.3 Colorado
Stations used:
C0.CHIL C0.HAYD C0.LAMA C0.MCSU C0.N23A C0.Q24A C0.S22A
C0.SPVA C0.T25A IU.ANMO N4.KSCO N4.MSTX SC.Y22A TX.DRZT
US.AMTX US.MVCO US.SDCO YX.UNM2
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 2.34e+22 dyne-cm
Mw = 4.18
Z = 3 km
Plane Strike Dip Rake
NP1 55 55 -80
NP2 218 36 -104
Principal Axes:
Axis Value Plunge Azimuth
T 2.34e+22 9 138
N 0.00e+00 8 229
P -2.34e+22 77 359
Moment Tensor: (dyne-cm)
Component Value
Mxx 1.14e+22
Mxy -1.13e+22
Mxz -7.81e+21
Myy 1.03e+22
Myz 2.62e+21
Mzz -2.17e+22
##############
######################
#############---------------
###########-------------------
##########------------------------
#########--------------------------#
#########---------------------------##
########----------------------------####
#######----------- --------------#####
#######------------ P -------------#######
#######------------ ------------########
######---------------------------#########
######-------------------------###########
####------------------------############
####----------------------##############
####------------------################
###---------------##################
##----------################ ###
-######################### T #
-########################
######################
##############
Global CMT Convention Moment Tensor:
R T P
-2.17e+22 -7.81e+21 -2.62e+21
-7.81e+21 1.14e+22 1.13e+22
-2.62e+21 1.13e+22 1.03e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230310060647/index.html
|
STK = 55
DIP = 55
RAKE = -80
MW = 4.18
HS = 3.0
The NDK file is 20230310060647.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2023/03/10 06:06:47:0 37.17 -104.73 5.6 4.3 Colorado
Stations used:
C0.CHIL C0.HAYD C0.LAMA C0.MCSU C0.N23A C0.Q24A C0.S22A
C0.SPVA C0.T25A IU.ANMO N4.KSCO N4.MSTX SC.Y22A TX.DRZT
US.AMTX US.MVCO US.SDCO YX.UNM2
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 2.34e+22 dyne-cm
Mw = 4.18
Z = 3 km
Plane Strike Dip Rake
NP1 55 55 -80
NP2 218 36 -104
Principal Axes:
Axis Value Plunge Azimuth
T 2.34e+22 9 138
N 0.00e+00 8 229
P -2.34e+22 77 359
Moment Tensor: (dyne-cm)
Component Value
Mxx 1.14e+22
Mxy -1.13e+22
Mxz -7.81e+21
Myy 1.03e+22
Myz 2.62e+21
Mzz -2.17e+22
##############
######################
#############---------------
###########-------------------
##########------------------------
#########--------------------------#
#########---------------------------##
########----------------------------####
#######----------- --------------#####
#######------------ P -------------#######
#######------------ ------------########
######---------------------------#########
######-------------------------###########
####------------------------############
####----------------------##############
####------------------################
###---------------##################
##----------################ ###
-######################### T #
-########################
######################
##############
Global CMT Convention Moment Tensor:
R T P
-2.17e+22 -7.81e+21 -2.62e+21
-7.81e+21 1.14e+22 1.13e+22
-2.62e+21 1.13e+22 1.03e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230310060647/index.html
|
Regional Moment Tensor (Mwr) Moment 3.850e+15 N-m Magnitude 4.32 Mwr Depth 4.0 km Percent DC 69% Half Duration - Catalog US Data Source US 1 Contributor US 1 Nodal Planes Plane Strike Dip Rake NP1 236 45 -72 NP2 32 48 -107 Principal Axes Axis Value Plunge Azimuth T 3.495e+15 N-m 2 134 N 0.632e+15 N-m 12 43 P -4.127e+15 N-m 78 232 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 235 30 -90 3.96 0.4215
WVFGRD96 2.0 55 65 -90 4.14 0.5517
WVFGRD96 3.0 55 55 -80 4.18 0.6689
WVFGRD96 4.0 220 40 -105 4.19 0.6413
WVFGRD96 5.0 65 55 -70 4.17 0.5454
WVFGRD96 6.0 265 85 15 4.14 0.4960
WVFGRD96 7.0 265 80 10 4.17 0.4803
WVFGRD96 8.0 270 80 15 4.18 0.4609
WVFGRD96 9.0 280 60 20 4.19 0.4614
WVFGRD96 10.0 275 55 15 4.22 0.4641
WVFGRD96 11.0 275 55 10 4.23 0.4683
WVFGRD96 12.0 275 55 10 4.24 0.4708
WVFGRD96 13.0 275 55 10 4.25 0.4714
WVFGRD96 14.0 275 55 10 4.26 0.4704
WVFGRD96 15.0 275 55 10 4.27 0.4675
WVFGRD96 16.0 275 55 10 4.28 0.4638
WVFGRD96 17.0 275 55 10 4.29 0.4592
WVFGRD96 18.0 275 60 10 4.30 0.4544
WVFGRD96 19.0 275 60 10 4.31 0.4512
WVFGRD96 20.0 275 60 10 4.32 0.4461
WVFGRD96 21.0 275 60 10 4.33 0.4417
WVFGRD96 22.0 275 60 10 4.34 0.4382
WVFGRD96 23.0 275 60 10 4.35 0.4361
WVFGRD96 24.0 280 55 20 4.36 0.4345
WVFGRD96 25.0 280 55 20 4.38 0.4348
WVFGRD96 26.0 280 55 20 4.39 0.4353
WVFGRD96 27.0 280 55 20 4.40 0.4351
WVFGRD96 28.0 90 40 -30 4.36 0.4350
WVFGRD96 29.0 90 40 -30 4.37 0.4405
The best solution is
WVFGRD96 3.0 55 55 -80 4.18 0.6689
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00