The ANSS event ID is ak0232cfl6rx and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0232cfl6rx/executive.
2023/02/20 05:34:16 58.932 -154.518 130.5 4.3 Alaska
USGS/SLU Moment Tensor Solution ENS 2023/02/20 05:34:16:0 58.93 -154.52 130.5 4.3 Alaska Stations used: AK.BRLK AK.CNP AK.HOM AK.N18K AK.N19K AK.O18K AK.O19K AK.Q19K AK.SLK AK.SWD AV.ACH AV.P19K AV.PLBL AV.PLK3 AV.RED AV.STLK II.KDAK Filtering commands used: cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 6.38e+22 dyne-cm Mw = 4.47 Z = 142 km Plane Strike Dip Rake NP1 319 58 138 NP2 75 55 40 Principal Axes: Axis Value Plunge Azimuth T 6.38e+22 51 285 N 0.00e+00 39 109 P -6.38e+22 2 18 Moment Tensor: (dyne-cm) Component Value Mxx -5.60e+22 Mxy -2.50e+22 Mxz 6.30e+21 Myy 1.74e+22 Myz -3.07e+22 Mzz 3.86e+22 ------------ P ---------------- --- ##-------------------------- ##########-------------------- ###############------------------- ###################----------------- ######################---------------- #########################--------------- ######### ###############------------- ########## T ################-----------## ########## #################---------### ###############################------##### ################################---####### ###############################-######## -###########################-----####### ----##################----------###### --------------------------------#### -------------------------------### -----------------------------# ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 3.86e+22 6.30e+21 3.07e+22 6.30e+21 -5.60e+22 2.50e+22 3.07e+22 2.50e+22 1.74e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230220053416/index.html |
STK = 75 DIP = 55 RAKE = 40 MW = 4.47 HS = 142.0
The NDK file is 20230220053416.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 100 45 -85 3.65 0.3162 WVFGRD96 4.0 305 85 -55 3.66 0.2504 WVFGRD96 6.0 130 90 50 3.69 0.3092 WVFGRD96 8.0 130 90 50 3.76 0.3416 WVFGRD96 10.0 130 85 45 3.79 0.3596 WVFGRD96 12.0 220 40 10 3.82 0.3711 WVFGRD96 14.0 220 45 10 3.85 0.3789 WVFGRD96 16.0 220 45 10 3.87 0.3823 WVFGRD96 18.0 225 45 15 3.90 0.3819 WVFGRD96 20.0 225 45 15 3.92 0.3781 WVFGRD96 22.0 225 45 15 3.94 0.3722 WVFGRD96 24.0 235 45 30 3.96 0.3655 WVFGRD96 26.0 235 45 30 3.98 0.3599 WVFGRD96 28.0 240 50 35 4.00 0.3520 WVFGRD96 30.0 240 50 35 4.01 0.3399 WVFGRD96 32.0 240 55 40 4.02 0.3230 WVFGRD96 34.0 240 55 40 4.03 0.3034 WVFGRD96 36.0 240 55 40 4.03 0.2820 WVFGRD96 38.0 215 50 0 4.05 0.2676 WVFGRD96 40.0 120 45 -60 4.14 0.2765 WVFGRD96 42.0 120 45 -60 4.17 0.2823 WVFGRD96 44.0 120 45 -60 4.19 0.2839 WVFGRD96 46.0 120 45 -65 4.20 0.2827 WVFGRD96 48.0 120 45 -65 4.22 0.2810 WVFGRD96 50.0 120 45 -65 4.23 0.2769 WVFGRD96 52.0 125 45 -60 4.23 0.2702 WVFGRD96 54.0 245 50 45 4.23 0.2642 WVFGRD96 56.0 250 50 50 4.24 0.2684 WVFGRD96 58.0 60 60 30 4.24 0.2726 WVFGRD96 60.0 60 60 30 4.25 0.2874 WVFGRD96 62.0 60 65 45 4.28 0.3113 WVFGRD96 64.0 65 60 45 4.29 0.3388 WVFGRD96 66.0 65 60 40 4.31 0.3662 WVFGRD96 68.0 65 55 40 4.32 0.3944 WVFGRD96 70.0 65 55 40 4.34 0.4213 WVFGRD96 72.0 65 55 40 4.35 0.4456 WVFGRD96 74.0 65 55 35 4.36 0.4672 WVFGRD96 76.0 65 55 35 4.37 0.4892 WVFGRD96 78.0 65 55 35 4.38 0.5108 WVFGRD96 80.0 65 55 40 4.38 0.5307 WVFGRD96 82.0 65 55 40 4.39 0.5487 WVFGRD96 84.0 70 55 45 4.39 0.5640 WVFGRD96 86.0 70 55 45 4.40 0.5801 WVFGRD96 88.0 70 55 45 4.40 0.5942 WVFGRD96 90.0 70 55 45 4.41 0.6067 WVFGRD96 92.0 70 55 45 4.41 0.6171 WVFGRD96 94.0 70 55 45 4.41 0.6266 WVFGRD96 96.0 80 50 40 4.42 0.6368 WVFGRD96 98.0 80 50 40 4.43 0.6465 WVFGRD96 100.0 80 50 40 4.43 0.6549 WVFGRD96 102.0 80 50 40 4.43 0.6631 WVFGRD96 104.0 80 50 40 4.44 0.6704 WVFGRD96 106.0 80 50 40 4.44 0.6765 WVFGRD96 108.0 80 50 40 4.44 0.6816 WVFGRD96 110.0 80 50 40 4.44 0.6874 WVFGRD96 112.0 80 50 40 4.45 0.6920 WVFGRD96 114.0 80 50 40 4.45 0.6965 WVFGRD96 116.0 75 55 40 4.45 0.7005 WVFGRD96 118.0 75 55 40 4.45 0.7046 WVFGRD96 120.0 75 55 40 4.45 0.7075 WVFGRD96 122.0 75 55 40 4.45 0.7100 WVFGRD96 124.0 75 55 40 4.46 0.7126 WVFGRD96 126.0 75 55 40 4.46 0.7153 WVFGRD96 128.0 75 55 40 4.46 0.7172 WVFGRD96 130.0 75 55 40 4.46 0.7184 WVFGRD96 132.0 75 55 40 4.46 0.7193 WVFGRD96 134.0 75 55 40 4.46 0.7213 WVFGRD96 136.0 75 55 40 4.47 0.7223 WVFGRD96 138.0 75 55 40 4.47 0.7214 WVFGRD96 140.0 75 55 40 4.47 0.7222 WVFGRD96 142.0 75 55 40 4.47 0.7227 WVFGRD96 144.0 80 55 45 4.47 0.7222 WVFGRD96 146.0 80 55 45 4.47 0.7213 WVFGRD96 148.0 80 55 45 4.47 0.7211 WVFGRD96 150.0 80 55 40 4.48 0.7206 WVFGRD96 152.0 80 55 40 4.48 0.7190 WVFGRD96 154.0 80 55 40 4.48 0.7186 WVFGRD96 156.0 80 55 40 4.49 0.7163 WVFGRD96 158.0 80 55 40 4.49 0.7146
The best solution is
WVFGRD96 142.0 75 55 40 4.47 0.7227
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00