Location

Location ANSS

The ANSS event ID is ak0232axzttx and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0232axzttx/executive.

2023/02/19 15:32:54 63.281 -150.553 131.3 3.8 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2023/02/19 15:32:54:0  63.28 -150.55 131.3 3.8 Alaska
 
 Stations used:
   AK.BPAW AK.CAST AK.CCB AK.CUT AK.DHY AK.GCSA AK.GHO AK.HARP 
   AK.HDA AK.I21K AK.J25K AK.K24K AK.KNK AK.KTH AK.L22K AK.MCK 
   AK.MLY AK.NEA2 AK.POKR AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM 
   AK.WAT6 AK.WRH AT.PMR IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 1.40e+22 dyne-cm
  Mw = 4.03 
  Z  = 136 km
  Plane   Strike  Dip  Rake
   NP1      210    55   -75
   NP2        5    38   -110
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.40e+22      9     289
    N   0.00e+00     12      21
    P  -1.40e+22     75     164

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     6.05e+20
       Mxy    -4.01e+21
       Mxz     4.10e+21
       Myy     1.21e+22
       Myz    -2.96e+21
       Mzz    -1.27e+22
                                                     
                                                     
                                                     
                                                     
                     ###########---                  
                 #################--###              
              #################-----######           
             ################--------######          
           ###############------------#######        
          ###############--------------#######       
           ############-----------------#######      
         T ###########------------------########     
           #########---------------------#######     
       ############----------------------########    
       ############----------------------########    
       ###########-----------------------########    
       ##########-----------   ----------########    
        #########----------- P ---------########     
        ########------------   ---------########     
         #######-----------------------########      
          ######----------------------########       
           #####---------------------########        
             ###--------------------#######          
              ###-----------------########           
                 ---------------#######              
                     --------######                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.27e+22   4.10e+21   2.96e+21 
  4.10e+21   6.05e+20   4.01e+21 
  2.96e+21   4.01e+21   1.21e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230219153254/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 210
      DIP = 55
     RAKE = -75
       MW = 4.03
       HS = 136.0

The NDK file is 20230219153254.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
br c 0.12 0.25 n 4 p 2
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0     5    50    95   3.27 0.3325
WVFGRD96    4.0   160    80    65   3.36 0.3030
WVFGRD96    6.0   160    80    65   3.36 0.3673
WVFGRD96    8.0   155    85    65   3.41 0.3873
WVFGRD96   10.0   330    90   -60   3.40 0.4002
WVFGRD96   12.0   325    85   -55   3.40 0.4087
WVFGRD96   14.0   325    80   -55   3.42 0.4153
WVFGRD96   16.0   325    80   -55   3.43 0.4185
WVFGRD96   18.0   325    75   -55   3.46 0.4202
WVFGRD96   20.0   330    70   -55   3.48 0.4206
WVFGRD96   22.0   330    70   -55   3.50 0.4175
WVFGRD96   24.0   330    70   -55   3.52 0.4130
WVFGRD96   26.0   330    70   -55   3.54 0.4068
WVFGRD96   28.0   325    70   -55   3.55 0.3983
WVFGRD96   30.0   325    70   -55   3.57 0.3885
WVFGRD96   32.0   150    55    40   3.58 0.3746
WVFGRD96   34.0   155    50    50   3.60 0.3762
WVFGRD96   36.0   160    50    55   3.62 0.3744
WVFGRD96   38.0   100    50    55   3.64 0.3690
WVFGRD96   40.0   165    45    60   3.75 0.3542
WVFGRD96   42.0   165    40    65   3.76 0.3481
WVFGRD96   44.0   100    50    65   3.76 0.3404
WVFGRD96   46.0    85    50    45   3.77 0.3297
WVFGRD96   48.0    85    50    45   3.78 0.3238
WVFGRD96   50.0    85    50    45   3.79 0.3181
WVFGRD96   52.0    55    60   -20   3.80 0.3135
WVFGRD96   54.0    55    60   -20   3.82 0.3230
WVFGRD96   56.0    55    60   -20   3.83 0.3317
WVFGRD96   58.0    50    60   -30   3.86 0.3398
WVFGRD96   60.0    50    60   -30   3.87 0.3490
WVFGRD96   62.0    50    60   -30   3.88 0.3557
WVFGRD96   64.0    50    60   -30   3.89 0.3607
WVFGRD96   66.0   215    60   -65   3.85 0.3700
WVFGRD96   68.0   215    60   -65   3.86 0.3928
WVFGRD96   70.0   220    60   -60   3.87 0.4163
WVFGRD96   72.0   215    55   -65   3.88 0.4438
WVFGRD96   74.0   215    55   -65   3.89 0.4676
WVFGRD96   76.0   210    55   -70   3.90 0.4899
WVFGRD96   78.0   210    55   -70   3.91 0.5090
WVFGRD96   80.0   210    55   -70   3.92 0.5281
WVFGRD96   82.0   210    55   -70   3.92 0.5462
WVFGRD96   84.0   210    55   -70   3.93 0.5631
WVFGRD96   86.0   210    55   -70   3.93 0.5789
WVFGRD96   88.0   210    55   -70   3.94 0.5935
WVFGRD96   90.0   210    55   -70   3.94 0.6067
WVFGRD96   92.0   210    55   -70   3.95 0.6193
WVFGRD96   94.0   210    55   -70   3.95 0.6308
WVFGRD96   96.0   210    55   -70   3.96 0.6410
WVFGRD96   98.0   210    55   -75   3.96 0.6501
WVFGRD96  100.0   210    55   -75   3.97 0.6583
WVFGRD96  102.0   210    55   -75   3.97 0.6656
WVFGRD96  104.0   210    55   -75   3.97 0.6721
WVFGRD96  106.0   210    55   -75   3.98 0.6789
WVFGRD96  108.0   210    55   -75   3.98 0.6851
WVFGRD96  110.0   210    55   -75   3.99 0.6900
WVFGRD96  112.0   210    55   -75   3.99 0.6946
WVFGRD96  114.0   210    55   -75   3.99 0.6993
WVFGRD96  116.0   210    55   -75   4.00 0.7036
WVFGRD96  118.0   210    55   -75   4.00 0.7070
WVFGRD96  120.0   210    55   -75   4.00 0.7106
WVFGRD96  122.0   210    55   -75   4.01 0.7128
WVFGRD96  124.0   210    55   -75   4.01 0.7156
WVFGRD96  126.0   210    55   -75   4.01 0.7179
WVFGRD96  128.0   210    55   -75   4.02 0.7185
WVFGRD96  130.0   210    55   -75   4.02 0.7202
WVFGRD96  132.0   210    55   -75   4.02 0.7209
WVFGRD96  134.0   210    55   -75   4.02 0.7207
WVFGRD96  136.0   210    55   -75   4.03 0.7212
WVFGRD96  138.0   215    60   -75   4.03 0.7211
WVFGRD96  140.0   215    60   -75   4.04 0.7197
WVFGRD96  142.0   215    60   -75   4.04 0.7194
WVFGRD96  144.0   215    60   -75   4.04 0.7178
WVFGRD96  146.0   215    60   -75   4.04 0.7160
WVFGRD96  148.0   215    60   -75   4.04 0.7146
WVFGRD96  150.0   215    60   -75   4.05 0.7122
WVFGRD96  152.0   215    60   -75   4.05 0.7105
WVFGRD96  154.0   215    60   -75   4.05 0.7078
WVFGRD96  156.0   215    60   -75   4.05 0.7056
WVFGRD96  158.0   215    60   -75   4.05 0.7028

The best solution is

WVFGRD96  136.0   210    55   -75   4.03 0.7212

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Mon Apr 22 09:56:03 PM CDT 2024