The ANSS event ID is ak0232apqri0 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0232apqri0/executive.
2023/02/19 01:46:57 59.392 -153.021 82.0 4.2 Alaska
USGS/SLU Moment Tensor Solution ENS 2023/02/19 01:46:57:0 59.39 -153.02 82.0 4.2 Alaska Stations used: AK.BRLK AK.CNP AK.HOM AK.N19K AK.O18K AK.O19K AK.Q19K AK.SLK AV.ACH AV.P19K AV.RED II.KDAK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 2.11e+22 dyne-cm Mw = 4.15 Z = 92 km Plane Strike Dip Rake NP1 70 70 40 NP2 324 53 155 Principal Axes: Axis Value Plunge Azimuth T 2.11e+22 42 293 N 0.00e+00 46 92 P -2.11e+22 11 193 Moment Tensor: (dyne-cm) Component Value Mxx -1.75e+22 Mxy -8.85e+21 Mxz 7.89e+21 Myy 8.76e+21 Myz -8.76e+21 Mzz 8.73e+21 -------------- ---------------------- #########------------------- #############----------------- ##################---------------- #####################--------------- ########################-------------- ######## ################------------# ######## T #################---------### ######### ##################------###### ###############################---######## ###############################-########## ############################-----######### ######################----------######## ################-----------------####### --------------------------------###### -------------------------------##### ------------------------------#### ----------------------------## -------- ----------------# ----- P -------------- - ---------- Global CMT Convention Moment Tensor: R T P 8.73e+21 7.89e+21 8.76e+21 7.89e+21 -1.75e+22 8.85e+21 8.76e+21 8.85e+21 8.76e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230219014657/index.html |
STK = 70 DIP = 70 RAKE = 40 MW = 4.15 HS = 92.0
The NDK file is 20230219014657.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 260 80 15 3.42 0.4434 WVFGRD96 4.0 265 70 20 3.52 0.5189 WVFGRD96 6.0 70 70 -30 3.56 0.5621 WVFGRD96 8.0 65 65 -35 3.61 0.5769 WVFGRD96 10.0 260 75 25 3.62 0.5890 WVFGRD96 12.0 260 75 20 3.64 0.5907 WVFGRD96 14.0 260 75 15 3.66 0.5885 WVFGRD96 16.0 70 75 -20 3.67 0.5939 WVFGRD96 18.0 255 70 15 3.70 0.5956 WVFGRD96 20.0 255 70 15 3.72 0.6001 WVFGRD96 22.0 255 65 15 3.74 0.6042 WVFGRD96 24.0 255 65 10 3.77 0.6082 WVFGRD96 26.0 255 65 10 3.79 0.6126 WVFGRD96 28.0 255 65 10 3.81 0.6181 WVFGRD96 30.0 255 65 10 3.83 0.6252 WVFGRD96 32.0 255 65 10 3.85 0.6352 WVFGRD96 34.0 255 70 10 3.87 0.6467 WVFGRD96 36.0 255 70 10 3.89 0.6562 WVFGRD96 38.0 255 70 10 3.92 0.6592 WVFGRD96 40.0 255 60 20 3.98 0.6702 WVFGRD96 42.0 250 65 20 4.00 0.6686 WVFGRD96 44.0 245 70 -15 4.00 0.6693 WVFGRD96 46.0 245 65 -20 4.02 0.6754 WVFGRD96 48.0 250 70 -20 4.03 0.6798 WVFGRD96 50.0 70 70 30 4.05 0.6867 WVFGRD96 52.0 70 70 30 4.06 0.6928 WVFGRD96 54.0 70 70 30 4.06 0.6977 WVFGRD96 56.0 70 70 30 4.07 0.7033 WVFGRD96 58.0 70 70 35 4.08 0.7117 WVFGRD96 60.0 70 70 35 4.09 0.7193 WVFGRD96 62.0 75 70 40 4.09 0.7271 WVFGRD96 64.0 75 70 40 4.09 0.7325 WVFGRD96 66.0 75 70 40 4.10 0.7385 WVFGRD96 68.0 70 70 40 4.11 0.7438 WVFGRD96 70.0 70 70 35 4.11 0.7478 WVFGRD96 72.0 70 65 35 4.12 0.7532 WVFGRD96 74.0 70 65 35 4.13 0.7563 WVFGRD96 76.0 70 65 35 4.13 0.7599 WVFGRD96 78.0 70 65 35 4.14 0.7627 WVFGRD96 80.0 70 65 35 4.14 0.7656 WVFGRD96 82.0 70 65 35 4.14 0.7673 WVFGRD96 84.0 70 65 35 4.15 0.7687 WVFGRD96 86.0 70 65 35 4.15 0.7696 WVFGRD96 88.0 70 65 35 4.16 0.7706 WVFGRD96 90.0 70 65 35 4.16 0.7709 WVFGRD96 92.0 70 70 40 4.15 0.7713 WVFGRD96 94.0 70 70 40 4.15 0.7708 WVFGRD96 96.0 70 70 40 4.16 0.7696 WVFGRD96 98.0 70 70 40 4.16 0.7692 WVFGRD96 100.0 70 70 40 4.16 0.7689 WVFGRD96 102.0 70 70 40 4.17 0.7686 WVFGRD96 104.0 70 70 40 4.17 0.7670 WVFGRD96 106.0 70 70 40 4.17 0.7647 WVFGRD96 108.0 70 70 40 4.18 0.7640 WVFGRD96 110.0 70 70 40 4.18 0.7622 WVFGRD96 112.0 70 70 40 4.18 0.7600 WVFGRD96 114.0 70 70 40 4.19 0.7571 WVFGRD96 116.0 70 70 40 4.19 0.7557 WVFGRD96 118.0 70 70 40 4.19 0.7537 WVFGRD96 120.0 70 70 40 4.19 0.7507 WVFGRD96 122.0 70 70 45 4.20 0.7492 WVFGRD96 124.0 70 70 45 4.20 0.7463 WVFGRD96 126.0 70 70 40 4.20 0.7441 WVFGRD96 128.0 70 70 40 4.21 0.7429 WVFGRD96 130.0 70 70 40 4.21 0.7394 WVFGRD96 132.0 65 70 40 4.23 0.7385 WVFGRD96 134.0 65 70 40 4.23 0.7365 WVFGRD96 136.0 65 70 40 4.23 0.7291 WVFGRD96 138.0 65 70 35 4.24 0.7189 WVFGRD96 140.0 65 70 35 4.24 0.7047 WVFGRD96 142.0 65 70 30 4.24 0.6892 WVFGRD96 144.0 65 70 30 4.24 0.6670 WVFGRD96 146.0 65 75 25 4.22 0.6185 WVFGRD96 148.0 65 75 20 4.22 0.5463
The best solution is
WVFGRD96 92.0 70 70 40 4.15 0.7713
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00