The ANSS event ID is ak023298h9go and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak023298h9go/executive.
2023/02/18 12:00:25 62.865 -148.197 66.6 3.8 Alaska
USGS/SLU Moment Tensor Solution ENS 2023/02/18 12:00:25:0 62.87 -148.20 66.6 3.8 Alaska Stations used: AK.CUT AK.DHY AK.GHO AK.HDA AK.KLU AK.KTH AK.L22K AK.MCK AK.PAX AK.RND AK.SCM AK.SKN AK.WAT6 AK.WRH AT.PMR AV.STLK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 1.10e+22 dyne-cm Mw = 3.96 Z = 78 km Plane Strike Dip Rake NP1 251 77 -128 NP2 145 40 -20 Principal Axes: Axis Value Plunge Azimuth T 1.10e+22 23 9 N 0.00e+00 37 260 P -1.10e+22 44 123 Moment Tensor: (dyne-cm) Component Value Mxx 7.44e+21 Mxy 4.00e+21 Mxz 6.84e+21 Myy -3.75e+21 Myz -3.99e+21 Mzz -3.69e+21 ############## ############ ####### -############## T ########## --############## ########### ---############################### ----################################ ----################################## -----###########################-------- -----###################---------------- -------############----------------------- -------#######---------------------------- --------##-------------------------------- -------#---------------------------------- ---#####-------------------- --------- -########------------------- P --------- ##########----------------- -------- ##########-------------------------- ###########----------------------- ############------------------ ##############-------------- ###################### ############## Global CMT Convention Moment Tensor: R T P -3.69e+21 6.84e+21 3.99e+21 6.84e+21 7.44e+21 -4.00e+21 3.99e+21 -4.00e+21 -3.75e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230218120025/index.html |
STK = 145 DIP = 40 RAKE = -20 MW = 3.96 HS = 78.0
The NDK file is 20230218120025.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 10 50 65 3.28 0.3817 WVFGRD96 4.0 165 40 0 3.33 0.4226 WVFGRD96 6.0 160 40 -5 3.36 0.4779 WVFGRD96 8.0 165 40 10 3.40 0.4986 WVFGRD96 10.0 165 45 10 3.41 0.5109 WVFGRD96 12.0 165 50 10 3.42 0.5198 WVFGRD96 14.0 165 50 10 3.44 0.5275 WVFGRD96 16.0 160 50 -5 3.46 0.5342 WVFGRD96 18.0 160 55 0 3.48 0.5417 WVFGRD96 20.0 155 55 -20 3.52 0.5492 WVFGRD96 22.0 160 50 -5 3.53 0.5563 WVFGRD96 24.0 160 50 -5 3.55 0.5644 WVFGRD96 26.0 160 50 -5 3.57 0.5722 WVFGRD96 28.0 160 55 -5 3.59 0.5800 WVFGRD96 30.0 160 55 -5 3.61 0.5853 WVFGRD96 32.0 160 55 -5 3.62 0.5907 WVFGRD96 34.0 160 55 -5 3.64 0.5940 WVFGRD96 36.0 160 55 -10 3.67 0.5959 WVFGRD96 38.0 160 60 -10 3.69 0.6007 WVFGRD96 40.0 160 45 -5 3.77 0.6024 WVFGRD96 42.0 160 50 -5 3.78 0.6043 WVFGRD96 44.0 160 50 -5 3.80 0.6057 WVFGRD96 46.0 160 50 -5 3.81 0.6071 WVFGRD96 48.0 160 50 -5 3.82 0.6083 WVFGRD96 50.0 160 50 -5 3.84 0.6101 WVFGRD96 52.0 155 45 -10 3.86 0.6129 WVFGRD96 54.0 140 45 -25 3.88 0.6170 WVFGRD96 56.0 140 45 -25 3.89 0.6260 WVFGRD96 58.0 140 45 -25 3.90 0.6339 WVFGRD96 60.0 140 45 -25 3.90 0.6426 WVFGRD96 62.0 140 45 -25 3.91 0.6508 WVFGRD96 64.0 140 40 -25 3.92 0.6562 WVFGRD96 66.0 140 40 -25 3.93 0.6639 WVFGRD96 68.0 140 40 -25 3.94 0.6681 WVFGRD96 70.0 140 40 -25 3.94 0.6726 WVFGRD96 72.0 140 40 -20 3.95 0.6750 WVFGRD96 74.0 145 40 -20 3.95 0.6771 WVFGRD96 76.0 145 40 -20 3.96 0.6781 WVFGRD96 78.0 145 40 -20 3.96 0.6782 WVFGRD96 80.0 145 40 -20 3.97 0.6781 WVFGRD96 82.0 145 40 -20 3.97 0.6761 WVFGRD96 84.0 140 40 -25 3.97 0.6733 WVFGRD96 86.0 140 40 -25 3.97 0.6705 WVFGRD96 88.0 140 40 -25 3.98 0.6669 WVFGRD96 90.0 140 40 -25 3.98 0.6637 WVFGRD96 92.0 140 40 -30 3.98 0.6597 WVFGRD96 94.0 140 45 -30 3.98 0.6559 WVFGRD96 96.0 140 45 -30 3.98 0.6525 WVFGRD96 98.0 140 45 -30 3.98 0.6488 WVFGRD96 100.0 140 45 -35 3.99 0.6455 WVFGRD96 102.0 140 45 -35 3.99 0.6424 WVFGRD96 104.0 140 45 -35 3.99 0.6390 WVFGRD96 106.0 140 45 -35 4.00 0.6348 WVFGRD96 108.0 140 45 -40 4.00 0.6314 WVFGRD96 110.0 140 45 -40 4.01 0.6281 WVFGRD96 112.0 140 45 -40 4.01 0.6242 WVFGRD96 114.0 135 45 -45 4.01 0.6206 WVFGRD96 116.0 135 45 -45 4.02 0.6174 WVFGRD96 118.0 135 45 -50 4.03 0.6147 WVFGRD96 120.0 135 45 -50 4.03 0.6104 WVFGRD96 122.0 135 45 -50 4.03 0.5999 WVFGRD96 124.0 135 45 -50 4.03 0.5848 WVFGRD96 126.0 135 45 -50 4.03 0.5689 WVFGRD96 128.0 135 45 -50 4.03 0.5511 WVFGRD96 130.0 130 45 -60 4.05 0.5383 WVFGRD96 132.0 130 45 -60 4.05 0.5324 WVFGRD96 134.0 135 50 -55 4.04 0.5261 WVFGRD96 136.0 135 50 -55 4.04 0.5171 WVFGRD96 138.0 135 50 -60 4.06 0.5043 WVFGRD96 140.0 135 50 -60 4.06 0.4895 WVFGRD96 142.0 125 45 -65 4.06 0.4747 WVFGRD96 144.0 125 45 -70 4.07 0.4580 WVFGRD96 146.0 125 45 -70 4.07 0.4371 WVFGRD96 148.0 125 45 -70 4.07 0.4202
The best solution is
WVFGRD96 78.0 145 40 -20 3.96 0.6782
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00