The ANSS event ID is ak023qqz70l and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak023qqz70l/executive.
2023/01/16 17:43:27 61.720 -149.552 34.8 4.5 Alaska
USGS/SLU Moment Tensor Solution ENS 2023/01/16 17:43:27:0 61.72 -149.55 34.8 4.5 Alaska Stations used: AK.CAST AK.DHY AK.EYAK AK.FIRE AK.GHO AK.GLI AK.KLU AK.KNK AK.L22K AK.M19K AK.MCK AK.PAX AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AT.PMR AV.RED AV.STLK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 6.84e+22 dyne-cm Mw = 4.49 Z = 46 km Plane Strike Dip Rake NP1 165 55 -85 NP2 336 35 -97 Principal Axes: Axis Value Plunge Azimuth T 6.84e+22 10 251 N 0.00e+00 4 342 P -6.84e+22 79 94 Moment Tensor: (dyne-cm) Component Value Mxx 6.73e+21 Mxy 2.02e+22 Mxz -2.73e+21 Myy 5.73e+22 Myz -2.34e+22 Mzz -6.40e+22 -############# ####-------########### ######------------########## ######---------------######### ########-----------------######### #########-------------------######## #########---------------------######## ##########----------------------######## ##########-----------------------####### ############----------------------######## ############----------- ---------####### ############----------- P ---------####### #############---------- ---------####### # ########----------------------###### # T #########---------------------###### ##########--------------------##### #############-------------------#### #############-----------------#### ############---------------### #############------------### ############---------# ###########--- Global CMT Convention Moment Tensor: R T P -6.40e+22 -2.73e+21 2.34e+22 -2.73e+21 6.73e+21 -2.02e+22 2.34e+22 -2.02e+22 5.73e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230116174327/index.html |
STK = 165 DIP = 55 RAKE = -85 MW = 4.49 HS = 46.0
The NDK file is 20230116174327.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2023/01/16 17:43:27:0 61.72 -149.55 34.8 4.5 Alaska Stations used: AK.CAST AK.DHY AK.EYAK AK.FIRE AK.GHO AK.GLI AK.KLU AK.KNK AK.L22K AK.M19K AK.MCK AK.PAX AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AT.PMR AV.RED AV.STLK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 6.84e+22 dyne-cm Mw = 4.49 Z = 46 km Plane Strike Dip Rake NP1 165 55 -85 NP2 336 35 -97 Principal Axes: Axis Value Plunge Azimuth T 6.84e+22 10 251 N 0.00e+00 4 342 P -6.84e+22 79 94 Moment Tensor: (dyne-cm) Component Value Mxx 6.73e+21 Mxy 2.02e+22 Mxz -2.73e+21 Myy 5.73e+22 Myz -2.34e+22 Mzz -6.40e+22 -############# ####-------########### ######------------########## ######---------------######### ########-----------------######### #########-------------------######## #########---------------------######## ##########----------------------######## ##########-----------------------####### ############----------------------######## ############----------- ---------####### ############----------- P ---------####### #############---------- ---------####### # ########----------------------###### # T #########---------------------###### ##########--------------------##### #############-------------------#### #############-----------------#### ############---------------### #############------------### ############---------# ###########--- Global CMT Convention Moment Tensor: R T P -6.40e+22 -2.73e+21 2.34e+22 -2.73e+21 6.73e+21 -2.02e+22 2.34e+22 -2.02e+22 5.73e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230116174327/index.html |
Regional Moment Tensor (Mwr) Moment 7.637e+15 N-m Magnitude 4.52 Mwr Depth 45.0 km Percent DC 95% Half Duration - Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 337 32 -102 NP2 171 58 -82 Principal Axes Axis Value Plunge Azimuth T 7.538e+15 N-m 13 255 N 0.195e+15 N-m 6 347 P -7.732e+15 N-m 75 103 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 340 45 85 3.72 0.2125 WVFGRD96 2.0 340 45 90 3.84 0.2682 WVFGRD96 3.0 170 40 -80 3.89 0.2443 WVFGRD96 4.0 180 40 -70 3.91 0.2457 WVFGRD96 5.0 35 55 -30 3.88 0.2492 WVFGRD96 6.0 320 75 70 3.94 0.2600 WVFGRD96 7.0 325 70 75 3.95 0.2774 WVFGRD96 8.0 60 35 30 4.00 0.2953 WVFGRD96 9.0 60 30 30 4.02 0.3141 WVFGRD96 10.0 60 35 30 4.03 0.3294 WVFGRD96 11.0 55 40 30 4.03 0.3409 WVFGRD96 12.0 55 40 30 4.04 0.3499 WVFGRD96 13.0 55 40 25 4.04 0.3561 WVFGRD96 14.0 55 40 25 4.05 0.3604 WVFGRD96 15.0 15 55 -45 4.07 0.3708 WVFGRD96 16.0 15 55 -45 4.08 0.3830 WVFGRD96 17.0 15 55 -45 4.09 0.3933 WVFGRD96 18.0 15 55 -45 4.10 0.4022 WVFGRD96 19.0 15 55 -45 4.11 0.4096 WVFGRD96 20.0 20 55 -40 4.12 0.4165 WVFGRD96 21.0 20 55 -40 4.13 0.4215 WVFGRD96 22.0 20 55 -40 4.14 0.4276 WVFGRD96 23.0 15 50 -45 4.15 0.4328 WVFGRD96 24.0 15 50 -45 4.16 0.4376 WVFGRD96 25.0 15 50 -45 4.17 0.4413 WVFGRD96 26.0 15 50 -45 4.18 0.4443 WVFGRD96 27.0 15 50 -45 4.19 0.4483 WVFGRD96 28.0 10 45 -50 4.20 0.4524 WVFGRD96 29.0 10 45 -50 4.21 0.4573 WVFGRD96 30.0 10 45 -50 4.22 0.4633 WVFGRD96 31.0 195 50 -45 4.26 0.4731 WVFGRD96 32.0 190 50 -50 4.27 0.4841 WVFGRD96 33.0 0 40 -65 4.25 0.4961 WVFGRD96 34.0 0 40 -65 4.26 0.5085 WVFGRD96 35.0 0 40 -65 4.27 0.5187 WVFGRD96 36.0 -15 35 -85 4.29 0.5286 WVFGRD96 37.0 -15 35 -85 4.31 0.5388 WVFGRD96 38.0 -15 35 -85 4.32 0.5475 WVFGRD96 39.0 -20 35 -90 4.34 0.5560 WVFGRD96 40.0 345 35 -85 4.43 0.5735 WVFGRD96 41.0 165 55 -85 4.45 0.5799 WVFGRD96 42.0 165 55 -85 4.46 0.5851 WVFGRD96 43.0 165 55 -85 4.47 0.5897 WVFGRD96 44.0 165 55 -85 4.48 0.5928 WVFGRD96 45.0 165 55 -85 4.48 0.5937 WVFGRD96 46.0 165 55 -85 4.49 0.5948 WVFGRD96 47.0 165 55 -85 4.50 0.5934 WVFGRD96 48.0 165 55 -85 4.50 0.5915 WVFGRD96 49.0 165 55 -85 4.51 0.5886 WVFGRD96 50.0 165 55 -85 4.51 0.5831 WVFGRD96 51.0 165 55 -85 4.51 0.5778 WVFGRD96 52.0 165 55 -85 4.51 0.5713 WVFGRD96 53.0 170 60 -80 4.52 0.5638 WVFGRD96 54.0 170 60 -80 4.53 0.5563 WVFGRD96 55.0 170 60 -80 4.53 0.5474 WVFGRD96 56.0 170 60 -80 4.53 0.5382 WVFGRD96 57.0 170 60 -80 4.53 0.5290 WVFGRD96 58.0 170 60 -80 4.53 0.5178 WVFGRD96 59.0 170 60 -80 4.53 0.5076
The best solution is
WVFGRD96 46.0 165 55 -85 4.49 0.5948
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00