Location

Location ANSS

The ANSS event ID is ak023qqz70l and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak023qqz70l/executive.

2023/01/16 17:43:27 61.720 -149.552 34.8 4.5 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2023/01/16 17:43:27:0  61.72 -149.55  34.8 4.5 Alaska
 
 Stations used:
   AK.CAST AK.DHY AK.EYAK AK.FIRE AK.GHO AK.GLI AK.KLU AK.KNK 
   AK.L22K AK.M19K AK.MCK AK.PAX AK.PWL AK.RC01 AK.RND AK.SAW 
   AK.SCM AK.SKN AK.SLK AT.PMR AV.RED AV.STLK 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 6.84e+22 dyne-cm
  Mw = 4.49 
  Z  = 46 km
  Plane   Strike  Dip  Rake
   NP1      165    55   -85
   NP2      336    35   -97
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.84e+22     10     251
    N   0.00e+00      4     342
    P  -6.84e+22     79      94

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     6.73e+21
       Mxy     2.02e+22
       Mxz    -2.73e+21
       Myy     5.73e+22
       Myz    -2.34e+22
       Mzz    -6.40e+22
                                                     
                                                     
                                                     
                                                     
                     -#############                  
                 ####-------###########              
              ######------------##########           
             ######---------------#########          
           ########-----------------#########        
          #########-------------------########       
         #########---------------------########      
        ##########----------------------########     
        ##########-----------------------#######     
       ############----------------------########    
       ############-----------   ---------#######    
       ############----------- P ---------#######    
       #############----------   ---------#######    
        #   ########----------------------######     
        # T #########---------------------######     
            ##########--------------------#####      
          #############-------------------####       
           #############-----------------####        
             ############---------------###          
              #############------------###           
                 ############---------#              
                     ###########---                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -6.40e+22  -2.73e+21   2.34e+22 
 -2.73e+21   6.73e+21  -2.02e+22 
  2.34e+22  -2.02e+22   5.73e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230116174327/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 165
      DIP = 55
     RAKE = -85
       MW = 4.49
       HS = 46.0

The NDK file is 20230116174327.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2023/01/16 17:43:27:0  61.72 -149.55  34.8 4.5 Alaska
 
 Stations used:
   AK.CAST AK.DHY AK.EYAK AK.FIRE AK.GHO AK.GLI AK.KLU AK.KNK 
   AK.L22K AK.M19K AK.MCK AK.PAX AK.PWL AK.RC01 AK.RND AK.SAW 
   AK.SCM AK.SKN AK.SLK AT.PMR AV.RED AV.STLK 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 6.84e+22 dyne-cm
  Mw = 4.49 
  Z  = 46 km
  Plane   Strike  Dip  Rake
   NP1      165    55   -85
   NP2      336    35   -97
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.84e+22     10     251
    N   0.00e+00      4     342
    P  -6.84e+22     79      94

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     6.73e+21
       Mxy     2.02e+22
       Mxz    -2.73e+21
       Myy     5.73e+22
       Myz    -2.34e+22
       Mzz    -6.40e+22
                                                     
                                                     
                                                     
                                                     
                     -#############                  
                 ####-------###########              
              ######------------##########           
             ######---------------#########          
           ########-----------------#########        
          #########-------------------########       
         #########---------------------########      
        ##########----------------------########     
        ##########-----------------------#######     
       ############----------------------########    
       ############-----------   ---------#######    
       ############----------- P ---------#######    
       #############----------   ---------#######    
        #   ########----------------------######     
        # T #########---------------------######     
            ##########--------------------#####      
          #############-------------------####       
           #############-----------------####        
             ############---------------###          
              #############------------###           
                 ############---------#              
                     ###########---                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -6.40e+22  -2.73e+21   2.34e+22 
 -2.73e+21   6.73e+21  -2.02e+22 
  2.34e+22  -2.02e+22   5.73e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20230116174327/index.html
	
Regional Moment Tensor (Mwr)
Moment 7.637e+15 N-m
Magnitude 4.52 Mwr
Depth 45.0 km
Percent DC 95%
Half Duration -
Catalog US
Data Source US 3
Contributor US 3

Nodal Planes
Plane Strike Dip Rake
NP1 337 32 -102
NP2 171 58 -82

Principal Axes
Axis Value Plunge Azimuth
T 7.538e+15 N-m 13 255
N 0.195e+15 N-m 6 347
P -7.732e+15 N-m 75 103

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   340    45    85   3.72 0.2125
WVFGRD96    2.0   340    45    90   3.84 0.2682
WVFGRD96    3.0   170    40   -80   3.89 0.2443
WVFGRD96    4.0   180    40   -70   3.91 0.2457
WVFGRD96    5.0    35    55   -30   3.88 0.2492
WVFGRD96    6.0   320    75    70   3.94 0.2600
WVFGRD96    7.0   325    70    75   3.95 0.2774
WVFGRD96    8.0    60    35    30   4.00 0.2953
WVFGRD96    9.0    60    30    30   4.02 0.3141
WVFGRD96   10.0    60    35    30   4.03 0.3294
WVFGRD96   11.0    55    40    30   4.03 0.3409
WVFGRD96   12.0    55    40    30   4.04 0.3499
WVFGRD96   13.0    55    40    25   4.04 0.3561
WVFGRD96   14.0    55    40    25   4.05 0.3604
WVFGRD96   15.0    15    55   -45   4.07 0.3708
WVFGRD96   16.0    15    55   -45   4.08 0.3830
WVFGRD96   17.0    15    55   -45   4.09 0.3933
WVFGRD96   18.0    15    55   -45   4.10 0.4022
WVFGRD96   19.0    15    55   -45   4.11 0.4096
WVFGRD96   20.0    20    55   -40   4.12 0.4165
WVFGRD96   21.0    20    55   -40   4.13 0.4215
WVFGRD96   22.0    20    55   -40   4.14 0.4276
WVFGRD96   23.0    15    50   -45   4.15 0.4328
WVFGRD96   24.0    15    50   -45   4.16 0.4376
WVFGRD96   25.0    15    50   -45   4.17 0.4413
WVFGRD96   26.0    15    50   -45   4.18 0.4443
WVFGRD96   27.0    15    50   -45   4.19 0.4483
WVFGRD96   28.0    10    45   -50   4.20 0.4524
WVFGRD96   29.0    10    45   -50   4.21 0.4573
WVFGRD96   30.0    10    45   -50   4.22 0.4633
WVFGRD96   31.0   195    50   -45   4.26 0.4731
WVFGRD96   32.0   190    50   -50   4.27 0.4841
WVFGRD96   33.0     0    40   -65   4.25 0.4961
WVFGRD96   34.0     0    40   -65   4.26 0.5085
WVFGRD96   35.0     0    40   -65   4.27 0.5187
WVFGRD96   36.0   -15    35   -85   4.29 0.5286
WVFGRD96   37.0   -15    35   -85   4.31 0.5388
WVFGRD96   38.0   -15    35   -85   4.32 0.5475
WVFGRD96   39.0   -20    35   -90   4.34 0.5560
WVFGRD96   40.0   345    35   -85   4.43 0.5735
WVFGRD96   41.0   165    55   -85   4.45 0.5799
WVFGRD96   42.0   165    55   -85   4.46 0.5851
WVFGRD96   43.0   165    55   -85   4.47 0.5897
WVFGRD96   44.0   165    55   -85   4.48 0.5928
WVFGRD96   45.0   165    55   -85   4.48 0.5937
WVFGRD96   46.0   165    55   -85   4.49 0.5948
WVFGRD96   47.0   165    55   -85   4.50 0.5934
WVFGRD96   48.0   165    55   -85   4.50 0.5915
WVFGRD96   49.0   165    55   -85   4.51 0.5886
WVFGRD96   50.0   165    55   -85   4.51 0.5831
WVFGRD96   51.0   165    55   -85   4.51 0.5778
WVFGRD96   52.0   165    55   -85   4.51 0.5713
WVFGRD96   53.0   170    60   -80   4.52 0.5638
WVFGRD96   54.0   170    60   -80   4.53 0.5563
WVFGRD96   55.0   170    60   -80   4.53 0.5474
WVFGRD96   56.0   170    60   -80   4.53 0.5382
WVFGRD96   57.0   170    60   -80   4.53 0.5290
WVFGRD96   58.0   170    60   -80   4.53 0.5178
WVFGRD96   59.0   170    60   -80   4.53 0.5076

The best solution is

WVFGRD96   46.0   165    55   -85   4.49 0.5948

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Mon Apr 22 09:12:59 PM CDT 2024