The ANSS event ID is ak022fwcrh7q and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak022fwcrh7q/executive.
2022/12/12 08:09:01 59.278 -150.643 36.7 4.7 Alaska
USGS/SLU Moment Tensor Solution ENS 2022/12/12 08:09:01:0 59.28 -150.64 36.7 4.7 Alaska Stations used: AK.BRLK AK.CNP AK.DIV AK.FID AK.GHO AK.GLI AK.HOM AK.KLU AK.KNK AK.N19K AK.O18K AK.O19K AK.Q19K AK.SAW AK.SLK AK.SWD AV.ACH AV.ILS AV.RED Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 1.07e+23 dyne-cm Mw = 4.62 Z = 44 km Plane Strike Dip Rake NP1 225 60 -45 NP2 342 52 -141 Principal Axes: Axis Value Plunge Azimuth T 1.07e+23 5 285 N 0.00e+00 38 18 P -1.07e+23 52 189 Moment Tensor: (dyne-cm) Component Value Mxx -3.28e+22 Mxy -3.28e+22 Mxz 5.36e+22 Myy 9.84e+22 Myz -7.98e+15 Mzz -6.56e+22 #------------- #########------------- ###############------------- ##################-----####### ################################## ##################------############ #################---------############ ##############------------############ T ############--------------############ ##########-----------------############ ############-------------------########### ###########--------------------########### #########----------------------########### #######------------------------######### #######------------------------######### #####----------- -----------######## ####----------- P ----------######## ##------------ ----------####### -------------------------##### -----------------------##### -------------------### -------------- Global CMT Convention Moment Tensor: R T P -6.56e+22 5.36e+22 7.98e+15 5.36e+22 -3.28e+22 3.28e+22 7.98e+15 3.28e+22 9.84e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221212080901/index.html |
STK = 225 DIP = 60 RAKE = -45 MW = 4.62 HS = 44.0
The NDK file is 20221212080901.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2022/12/12 08:09:01:0 59.28 -150.64 36.7 4.7 Alaska Stations used: AK.BRLK AK.CNP AK.DIV AK.FID AK.GHO AK.GLI AK.HOM AK.KLU AK.KNK AK.N19K AK.O18K AK.O19K AK.Q19K AK.SAW AK.SLK AK.SWD AV.ACH AV.ILS AV.RED Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 1.07e+23 dyne-cm Mw = 4.62 Z = 44 km Plane Strike Dip Rake NP1 225 60 -45 NP2 342 52 -141 Principal Axes: Axis Value Plunge Azimuth T 1.07e+23 5 285 N 0.00e+00 38 18 P -1.07e+23 52 189 Moment Tensor: (dyne-cm) Component Value Mxx -3.28e+22 Mxy -3.28e+22 Mxz 5.36e+22 Myy 9.84e+22 Myz -7.98e+15 Mzz -6.56e+22 #------------- #########------------- ###############------------- ##################-----####### ################################## ##################------############ #################---------############ ##############------------############ T ############--------------############ ##########-----------------############ ############-------------------########### ###########--------------------########### #########----------------------########### #######------------------------######### #######------------------------######### #####----------- -----------######## ####----------- P ----------######## ##------------ ----------####### -------------------------##### -----------------------##### -------------------### -------------- Global CMT Convention Moment Tensor: R T P -6.56e+22 5.36e+22 7.98e+15 5.36e+22 -3.28e+22 3.28e+22 7.98e+15 3.28e+22 9.84e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221212080901/index.html |
Regional Moment Tensor (Mwr) Moment 1.179e+16 N-m Magnitude 4.65 Mwr Depth 47.0 km Percent DC 96% Half Duration - Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 347 50 -128 NP2 218 53 -53 Principal Axes Axis Value Plunge Azimuth T 1.168e+16 N-m 1 283 N 0.022e+16 N-m 28 13 P -1.189e+16 N-m 62 191 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 200 60 35 3.86 0.2251 WVFGRD96 2.0 45 45 70 4.02 0.2892 WVFGRD96 3.0 10 45 -90 4.08 0.2849 WVFGRD96 4.0 185 70 -35 4.07 0.2938 WVFGRD96 5.0 190 75 -35 4.08 0.3209 WVFGRD96 6.0 50 90 45 4.07 0.3424 WVFGRD96 7.0 50 90 40 4.09 0.3658 WVFGRD96 8.0 55 85 45 4.16 0.3847 WVFGRD96 9.0 230 90 -45 4.17 0.4006 WVFGRD96 10.0 230 90 -40 4.18 0.4142 WVFGRD96 11.0 55 80 40 4.20 0.4258 WVFGRD96 12.0 230 90 -40 4.21 0.4338 WVFGRD96 13.0 230 90 -40 4.23 0.4409 WVFGRD96 14.0 55 85 35 4.25 0.4478 WVFGRD96 15.0 230 90 -35 4.26 0.4539 WVFGRD96 16.0 55 85 35 4.27 0.4595 WVFGRD96 17.0 50 90 35 4.28 0.4645 WVFGRD96 18.0 230 85 -35 4.30 0.4723 WVFGRD96 19.0 230 85 -35 4.31 0.4795 WVFGRD96 20.0 230 85 -35 4.32 0.4866 WVFGRD96 21.0 230 85 -35 4.33 0.4924 WVFGRD96 22.0 230 80 -35 4.35 0.4976 WVFGRD96 23.0 230 80 -35 4.35 0.5034 WVFGRD96 24.0 230 80 -35 4.36 0.5084 WVFGRD96 25.0 230 80 -35 4.37 0.5118 WVFGRD96 26.0 225 70 -35 4.38 0.5163 WVFGRD96 27.0 230 70 -35 4.40 0.5205 WVFGRD96 28.0 225 65 -35 4.40 0.5246 WVFGRD96 29.0 225 65 -35 4.41 0.5287 WVFGRD96 30.0 230 75 -35 4.41 0.5364 WVFGRD96 31.0 230 75 -35 4.42 0.5483 WVFGRD96 32.0 230 70 -35 4.44 0.5614 WVFGRD96 33.0 225 65 -40 4.44 0.5760 WVFGRD96 34.0 225 65 -40 4.45 0.5899 WVFGRD96 35.0 225 65 -40 4.46 0.6017 WVFGRD96 36.0 230 65 -40 4.48 0.6129 WVFGRD96 37.0 230 65 -40 4.49 0.6226 WVFGRD96 38.0 225 60 -40 4.49 0.6333 WVFGRD96 39.0 225 60 -40 4.50 0.6390 WVFGRD96 40.0 225 60 -45 4.59 0.6510 WVFGRD96 41.0 225 60 -45 4.60 0.6557 WVFGRD96 42.0 225 60 -45 4.61 0.6598 WVFGRD96 43.0 225 60 -45 4.62 0.6611 WVFGRD96 44.0 225 60 -45 4.62 0.6632 WVFGRD96 45.0 220 55 -50 4.63 0.6627 WVFGRD96 46.0 220 55 -50 4.64 0.6615 WVFGRD96 47.0 220 55 -50 4.64 0.6601 WVFGRD96 48.0 220 55 -50 4.65 0.6583 WVFGRD96 49.0 225 55 -45 4.65 0.6562 WVFGRD96 50.0 225 55 -45 4.65 0.6539 WVFGRD96 51.0 225 55 -45 4.66 0.6512 WVFGRD96 52.0 225 55 -45 4.66 0.6483 WVFGRD96 53.0 225 55 -45 4.66 0.6444 WVFGRD96 54.0 225 55 -45 4.66 0.6406 WVFGRD96 55.0 225 55 -45 4.67 0.6366 WVFGRD96 56.0 225 55 -45 4.67 0.6323 WVFGRD96 57.0 220 50 -45 4.67 0.6278 WVFGRD96 58.0 220 50 -45 4.67 0.6237 WVFGRD96 59.0 225 50 -45 4.68 0.6181
The best solution is
WVFGRD96 44.0 225 60 -45 4.62 0.6632
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00