The ANSS event ID is us7000ishe and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us7000ishe/executive.
2022/11/26 03:50:16 49.271 -126.092 33.4 4.9 BC, Canada
USGS/SLU Moment Tensor Solution ENS 2022/11/26 03:50:16:0 49.27 -126.09 33.4 4.9 BC, Canada Stations used: C8.BCOV CN.BPEB CN.CBB CN.CLRS CN.FHBB CN.GDR CN.MGRB CN.NLLB CN.NTKA CN.OZB CN.PABB CN.PACB CN.PGC CN.PHC CN.PTRF CN.SYMB CN.TAHB CN.TXDB CN.VDEB CN.VGZ CN.WOSB CN.WSLR PQ.ALBHB UW.BHAM UW.CROWN UW.DONK UW.HDW UW.LRIV UW.MULN UW.OHOH UW.OTR UW.RNWY UW.SAXON UW.SLDQ UW.SNAG Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 1.46e+23 dyne-cm Mw = 4.71 Z = 33 km Plane Strike Dip Rake NP1 323 81 -160 NP2 230 70 -10 Principal Axes: Axis Value Plunge Azimuth T 1.46e+23 7 95 N 0.00e+00 68 347 P -1.46e+23 21 188 Moment Tensor: (dyne-cm) Component Value Mxx -1.24e+23 Mxy -3.15e+22 Mxz 4.66e+22 Myy 1.40e+23 Myz 2.52e+22 Mzz -1.63e+22 -------------- ---------------------- ###------------------------- ######------------------------ ##########-----------------####### #############-----------############ ###############-------################ ##################--#################### ##################-##################### ################------#################### ##############---------################ #############------------############## T ###########---------------############# #########-----------------############## #######--------------------############# #####----------------------########### ###------------------------######### #--------------------------####### ----------- ------------#### ---------- P -------------## ------- ------------ -------------- Global CMT Convention Moment Tensor: R T P -1.63e+22 4.66e+22 -2.52e+22 4.66e+22 -1.24e+23 3.15e+22 -2.52e+22 3.15e+22 1.40e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221126035016/index.html |
STK = 230 DIP = 70 RAKE = -10 MW = 4.71 HS = 33.0
The NDK file is 20221126035016.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 320 75 -15 4.05 0.2179 WVFGRD96 2.0 320 75 -20 4.17 0.2872 WVFGRD96 3.0 320 75 -15 4.22 0.3173 WVFGRD96 4.0 320 80 -15 4.25 0.3345 WVFGRD96 5.0 230 80 -20 4.29 0.3446 WVFGRD96 6.0 230 80 -20 4.32 0.3669 WVFGRD96 7.0 230 80 -20 4.35 0.3886 WVFGRD96 8.0 230 80 -20 4.39 0.4121 WVFGRD96 9.0 230 80 -20 4.41 0.4274 WVFGRD96 10.0 230 85 -25 4.42 0.4444 WVFGRD96 11.0 235 90 -25 4.44 0.4624 WVFGRD96 12.0 55 90 20 4.46 0.4804 WVFGRD96 13.0 235 90 -20 4.48 0.4976 WVFGRD96 14.0 230 70 -15 4.50 0.5138 WVFGRD96 15.0 230 70 -15 4.52 0.5340 WVFGRD96 16.0 230 70 -15 4.53 0.5540 WVFGRD96 17.0 230 70 -15 4.54 0.5743 WVFGRD96 18.0 230 70 -10 4.56 0.5934 WVFGRD96 19.0 230 70 -10 4.57 0.6116 WVFGRD96 20.0 230 70 -10 4.59 0.6289 WVFGRD96 21.0 230 70 -10 4.60 0.6445 WVFGRD96 22.0 230 70 -10 4.61 0.6601 WVFGRD96 23.0 230 70 -10 4.62 0.6749 WVFGRD96 24.0 230 70 -10 4.63 0.6887 WVFGRD96 25.0 230 70 -10 4.64 0.7018 WVFGRD96 26.0 230 70 -10 4.65 0.7136 WVFGRD96 27.0 230 70 -10 4.66 0.7233 WVFGRD96 28.0 230 70 -10 4.67 0.7318 WVFGRD96 29.0 230 70 -10 4.68 0.7381 WVFGRD96 30.0 230 70 -10 4.69 0.7421 WVFGRD96 31.0 230 70 -10 4.70 0.7455 WVFGRD96 32.0 230 70 -10 4.71 0.7465 WVFGRD96 33.0 230 70 -10 4.71 0.7467 WVFGRD96 34.0 230 70 -10 4.72 0.7451 WVFGRD96 35.0 230 70 -10 4.73 0.7428 WVFGRD96 36.0 230 70 -10 4.74 0.7401 WVFGRD96 37.0 230 70 -10 4.75 0.7379 WVFGRD96 38.0 230 70 -10 4.77 0.7368 WVFGRD96 39.0 230 70 -10 4.78 0.7371 WVFGRD96 40.0 230 65 -15 4.82 0.7313 WVFGRD96 41.0 230 65 -15 4.83 0.7338 WVFGRD96 42.0 230 65 -15 4.84 0.7344 WVFGRD96 43.0 230 70 -15 4.85 0.7331 WVFGRD96 44.0 230 70 -15 4.85 0.7314 WVFGRD96 45.0 230 70 -15 4.86 0.7288 WVFGRD96 46.0 230 70 -15 4.87 0.7252 WVFGRD96 47.0 230 70 -15 4.87 0.7210 WVFGRD96 48.0 230 70 -10 4.88 0.7169 WVFGRD96 49.0 230 70 -10 4.89 0.7129 WVFGRD96 50.0 230 70 -10 4.89 0.7077 WVFGRD96 51.0 225 65 -10 4.90 0.7037 WVFGRD96 52.0 225 65 -10 4.90 0.6992 WVFGRD96 53.0 225 65 -10 4.91 0.6952 WVFGRD96 54.0 225 65 -10 4.91 0.6902 WVFGRD96 55.0 225 65 -10 4.92 0.6852 WVFGRD96 56.0 225 65 -10 4.92 0.6805 WVFGRD96 57.0 225 65 -10 4.92 0.6753 WVFGRD96 58.0 225 65 -10 4.93 0.6701 WVFGRD96 59.0 225 65 -10 4.93 0.6646
The best solution is
WVFGRD96 33.0 230 70 -10 4.71 0.7467
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00