The ANSS event ID is tx2022wnac and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/tx2022wnac/executive.
2022/11/17 04:38:32 31.636 -103.988 7.7 3.8 Texas
USGS/SLU Moment Tensor Solution ENS 2022/11/17 04:38:32:0 31.64 -103.99 7.7 3.8 Texas Stations used: GM.NMP02 GM.NMP25 GM.NMP41 GM.NMP44 GM.NMP45 IM.TX31 N4.ABTX N4.MSTX TX.ALPN TX.MB01 TX.MB12 TX.ODSA TX.OZNA TX.PB05 TX.PB11 TX.PB28 TX.PECS TX.SAND TX.SGCY TX.SN08 TX.VHRN US.MNTX Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 1.76e+21 dyne-cm Mw = 3.43 Z = 5 km Plane Strike Dip Rake NP1 101 52 -117 NP2 320 45 -60 Principal Axes: Axis Value Plunge Azimuth T 1.76e+21 4 209 N 0.00e+00 21 118 P -1.76e+21 69 309 Moment Tensor: (dyne-cm) Component Value Mxx 1.24e+21 Mxy 8.58e+20 Mxz -4.76e+20 Myy 2.81e+20 Myz 4.00e+20 Mzz -1.52e+21 ############## ###################### ----------################## ---------------############### --------------------############## ------------------------############ ---------------------------########### -----------------------------########### --------------- -------------######### #--------------- P --------------######### ##-------------- ---------------######## ####------------------------------######## #####------------------------------####### #######---------------------------###### ##########-------------------------##--- #############-------------------##---- #################################--- ################################-- #############################- ### #####################- T ################### ############## Global CMT Convention Moment Tensor: R T P -1.52e+21 -4.76e+20 -4.00e+20 -4.76e+20 1.24e+21 -8.58e+20 -4.00e+20 -8.58e+20 2.81e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221117043832/index.html |
STK = 320 DIP = 45 RAKE = -60 MW = 3.43 HS = 5.0
The NDK file is 20221117043832.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2022/11/17 04:38:32:0 31.64 -103.99 7.7 3.8 Texas Stations used: GM.NMP02 GM.NMP25 GM.NMP41 GM.NMP44 GM.NMP45 IM.TX31 N4.ABTX N4.MSTX TX.ALPN TX.MB01 TX.MB12 TX.ODSA TX.OZNA TX.PB05 TX.PB11 TX.PB28 TX.PECS TX.SAND TX.SGCY TX.SN08 TX.VHRN US.MNTX Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 1.76e+21 dyne-cm Mw = 3.43 Z = 5 km Plane Strike Dip Rake NP1 101 52 -117 NP2 320 45 -60 Principal Axes: Axis Value Plunge Azimuth T 1.76e+21 4 209 N 0.00e+00 21 118 P -1.76e+21 69 309 Moment Tensor: (dyne-cm) Component Value Mxx 1.24e+21 Mxy 8.58e+20 Mxz -4.76e+20 Myy 2.81e+20 Myz 4.00e+20 Mzz -1.52e+21 ############## ###################### ----------################## ---------------############### --------------------############## ------------------------############ ---------------------------########### -----------------------------########### --------------- -------------######### #--------------- P --------------######### ##-------------- ---------------######## ####------------------------------######## #####------------------------------####### #######---------------------------###### ##########-------------------------##--- #############-------------------##---- #################################--- ################################-- #############################- ### #####################- T ################### ############## Global CMT Convention Moment Tensor: R T P -1.52e+21 -4.76e+20 -4.00e+20 -4.76e+20 1.24e+21 -8.58e+20 -4.00e+20 -8.58e+20 2.81e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221117043832/index.html |
Regional Moment Tensor (Mwr) Moment 3.258e+14 N-m Magnitude 3.61 Mwr Depth 6.0 km Percent DC 82% Half Duration - Catalog US Data Source US 2 Contributor US 2 Nodal Planes Plane Strike Dip Rake NP1 315 51 -76 NP2 113 41 -107 Principal Axes Axis Value Plunge Azimuth T 3.095e+14 N-m 5 35 N 0.303e+14 N-m 11 126 P -3.399e+14 N-m 78 280 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 335 55 -20 3.11 0.2824 WVFGRD96 2.0 335 50 -25 3.25 0.3742 WVFGRD96 3.0 330 45 -40 3.34 0.4600 WVFGRD96 4.0 320 45 -60 3.41 0.5177 WVFGRD96 5.0 320 45 -60 3.43 0.5371 WVFGRD96 6.0 315 45 -65 3.44 0.5258 WVFGRD96 7.0 325 50 -50 3.44 0.5051 WVFGRD96 8.0 315 45 -70 3.52 0.5304 WVFGRD96 9.0 155 65 -35 3.46 0.4879 WVFGRD96 10.0 160 70 -30 3.46 0.4687 WVFGRD96 11.0 175 55 30 3.48 0.4625 WVFGRD96 12.0 170 60 25 3.48 0.4586 WVFGRD96 13.0 170 60 20 3.49 0.4540 WVFGRD96 14.0 170 60 20 3.50 0.4484 WVFGRD96 15.0 170 60 15 3.51 0.4414 WVFGRD96 16.0 170 60 15 3.51 0.4349 WVFGRD96 17.0 170 60 15 3.52 0.4297 WVFGRD96 18.0 170 60 15 3.53 0.4240 WVFGRD96 19.0 170 60 15 3.54 0.4186 WVFGRD96 20.0 170 60 15 3.55 0.4152 WVFGRD96 21.0 170 60 15 3.56 0.4116 WVFGRD96 22.0 170 60 15 3.56 0.4093 WVFGRD96 23.0 170 60 15 3.57 0.4068 WVFGRD96 24.0 170 60 15 3.58 0.4052 WVFGRD96 25.0 170 60 15 3.58 0.4034 WVFGRD96 26.0 170 60 15 3.59 0.4028 WVFGRD96 27.0 170 65 15 3.60 0.4014 WVFGRD96 28.0 170 65 15 3.61 0.4013 WVFGRD96 29.0 170 65 15 3.61 0.4008
The best solution is
WVFGRD96 5.0 320 45 -60 3.43 0.5371
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00