The ANSS event ID is tx2022wmmd and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/tx2022wmmd/executive.
2022/11/16 21:32:44 31.637 -103.999 6.9 5.4 Texas
USGS/SLU Moment Tensor Solution
ENS 2022/11/16 21:32:44:0 31.64 -104.00 6.9 5.4 Texas
Stations used:
4O.MID02 GM.NMP02 GM.NMP25 GM.NMP41 GM.NMP44 GM.NMP45
N4.ABTX N4.MSTX SC.Y22A TX.ALPN TX.APMT TX.BRDY TX.DKNS
TX.INDO TX.MB01 TX.MB06 TX.MB09 TX.MB12 TX.ODSA TX.OZNA
TX.PB01 TX.PB05 TX.PB06 TX.PB11 TX.PB21 TX.PB28 TX.PH02
TX.POST TX.SGCY TX.SN08 TX.VHRN US.AMTX US.JCT US.MNTX
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 6.46e+23 dyne-cm
Mw = 5.14
Z = 9 km
Plane Strike Dip Rake
NP1 160 65 -45
NP2 273 50 -147
Principal Axes:
Axis Value Plunge Azimuth
T 6.46e+23 9 220
N 0.00e+00 40 317
P -6.46e+23 49 119
Moment Tensor: (dyne-cm)
Component Value
Mxx 3.07e+23
Mxy 4.29e+23
Mxz 8.09e+22
Myy 4.29e+22
Myz -3.42e+23
Mzz -3.50e+23
##############
---###################
------######################
-------#######################
--------##########################
---------###########################
--------###-----------------##########
-----#######---------------------#######
--##########------------------------####
--############-------------------------###
##############--------------------------##
###############---------------------------
###############------------- -----------
###############------------ P ----------
################----------- ----------
################----------------------
################--------------------
### ##########------------------
# T ###########---------------
#############------------
###############-------
##############
Global CMT Convention Moment Tensor:
R T P
-3.50e+23 8.09e+22 3.42e+23
8.09e+22 3.07e+23 -4.29e+23
3.42e+23 -4.29e+23 4.29e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221116213244/index.html
|
STK = 160
DIP = 65
RAKE = -45
MW = 5.14
HS = 9.0
The NDK file is 20221116213244.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2022/11/16 21:32:44:0 31.64 -104.00 6.9 5.4 Texas
Stations used:
4O.MID02 GM.NMP02 GM.NMP25 GM.NMP41 GM.NMP44 GM.NMP45
N4.ABTX N4.MSTX SC.Y22A TX.ALPN TX.APMT TX.BRDY TX.DKNS
TX.INDO TX.MB01 TX.MB06 TX.MB09 TX.MB12 TX.ODSA TX.OZNA
TX.PB01 TX.PB05 TX.PB06 TX.PB11 TX.PB21 TX.PB28 TX.PH02
TX.POST TX.SGCY TX.SN08 TX.VHRN US.AMTX US.JCT US.MNTX
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 6.46e+23 dyne-cm
Mw = 5.14
Z = 9 km
Plane Strike Dip Rake
NP1 160 65 -45
NP2 273 50 -147
Principal Axes:
Axis Value Plunge Azimuth
T 6.46e+23 9 220
N 0.00e+00 40 317
P -6.46e+23 49 119
Moment Tensor: (dyne-cm)
Component Value
Mxx 3.07e+23
Mxy 4.29e+23
Mxz 8.09e+22
Myy 4.29e+22
Myz -3.42e+23
Mzz -3.50e+23
##############
---###################
------######################
-------#######################
--------##########################
---------###########################
--------###-----------------##########
-----#######---------------------#######
--##########------------------------####
--############-------------------------###
##############--------------------------##
###############---------------------------
###############------------- -----------
###############------------ P ----------
################----------- ----------
################----------------------
################--------------------
### ##########------------------
# T ###########---------------
#############------------
###############-------
##############
Global CMT Convention Moment Tensor:
R T P
-3.50e+23 8.09e+22 3.42e+23
8.09e+22 3.07e+23 -4.29e+23
3.42e+23 -4.29e+23 4.29e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221116213244/index.html
|
W-phase Moment Tensor (Mww) Moment 1.259e+17 N-m Magnitude 5.33 Mww Depth 11.5 km Percent DC 99% Half Duration 1.25 s Catalog US Data Source US 1 Contributor US 1 Nodal Planes Plane Strike Dip Rake NP1 284 41 -112 NP2 133 53 -72 Principal Axes Axis Value Plunge Azimuth T 1.263e+17 N-m 6 210 N -0.007e+17 N-m 14 301 P -1.255e+17 N-m 74 97 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 170 85 -5 4.65 0.2609
WVFGRD96 2.0 355 75 25 4.83 0.3479
WVFGRD96 3.0 350 90 45 4.93 0.3910
WVFGRD96 4.0 165 80 -45 4.97 0.4487
WVFGRD96 5.0 165 75 -45 5.00 0.5016
WVFGRD96 6.0 165 70 -45 5.03 0.5480
WVFGRD96 7.0 165 70 -40 5.06 0.5825
WVFGRD96 8.0 160 65 -50 5.13 0.6111
WVFGRD96 9.0 160 65 -45 5.14 0.6207
WVFGRD96 10.0 165 70 -40 5.16 0.6197
WVFGRD96 11.0 165 70 -35 5.17 0.6125
WVFGRD96 12.0 170 75 -35 5.18 0.5987
WVFGRD96 13.0 -5 75 25 5.19 0.5881
WVFGRD96 14.0 0 70 25 5.20 0.5772
WVFGRD96 15.0 0 70 25 5.21 0.5644
WVFGRD96 16.0 0 70 25 5.22 0.5496
WVFGRD96 17.0 0 65 25 5.23 0.5347
WVFGRD96 18.0 0 65 25 5.23 0.5194
WVFGRD96 19.0 0 65 25 5.24 0.5034
WVFGRD96 20.0 0 65 25 5.25 0.4874
WVFGRD96 21.0 0 65 25 5.25 0.4721
WVFGRD96 22.0 0 65 25 5.26 0.4571
WVFGRD96 23.0 0 65 25 5.26 0.4425
WVFGRD96 24.0 0 65 25 5.26 0.4295
WVFGRD96 25.0 0 65 25 5.27 0.4167
WVFGRD96 26.0 0 65 25 5.27 0.4060
WVFGRD96 27.0 0 65 25 5.27 0.3959
WVFGRD96 28.0 0 65 25 5.28 0.3883
WVFGRD96 29.0 0 65 25 5.28 0.3809
The best solution is
WVFGRD96 9.0 160 65 -45 5.14 0.6207
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00