Location

SLU Location

To check the ANSS location or to compare the observed P-wave first motions to the moment tensor solution, P- and S-wave first arrival times were manually read together with the P-wave first motions. The subsequent output of the program elocate is given in the file elocate.txt. The first motion plot is shown below.

Location ANSS

The ANSS event ID is ak022ctr3qn3 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak022ctr3qn3/executive.

2022/10/06 20:43:13 61.820 -147.573 34.1 4.8 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2022/10/06 20:43:13:0  61.82 -147.57  34.1 4.8 Alaska
 
 Stations used:
   AK.BMR AK.CAST AK.CUT AK.DHY AK.DIV AK.EYAK AK.FID AK.FIRE 
   AK.GHO AK.GLB AK.GLI AK.GRNC AK.HARP AK.HDA AK.HIN AK.I21K 
   AK.I23K AK.J20K AK.J25K AK.J26L AK.K20K AK.K24K AK.KLU 
   AK.KNK AK.L20K AK.L22K AK.L26K AK.LOGN AK.MCAR AK.MCK 
   AK.MLY AK.NEA2 AK.P23K AK.PAX AK.PIN AK.POKR AK.PPLA AK.PWL 
   AK.RC01 AK.RIDG AK.SAW AK.SCM AK.SKN AK.SLK AK.SSN AK.SWD 
   AK.TABL AK.VRDI AK.WAX AK.WRH AT.PMR IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 1.57e+23 dyne-cm
  Mw = 4.73 
  Z  = 45 km
  Plane   Strike  Dip  Rake
   NP1       11    58   -138
   NP2      255    55   -40
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.57e+23      2     132
    N   0.00e+00     39      41
    P  -1.57e+23     51     225

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.91e+22
       Mxy    -1.09e+23
       Mxz     5.11e+22
       Myy     5.55e+22
       Myz     5.76e+22
       Mzz    -9.46e+22
                                                     
                                                     
                                                     
                                                     
                     ############--                  
                 #################-----              
              #####################-------           
             ######################--------          
           #########################---------        
          ##########################----------       
         ################-----------#######----      
        ############-----------------##########-     
        #########--------------------###########     
       #######----------------------#############    
       #####------------------------#############    
       ###--------------------------#############    
       ##---------------------------#############    
        ------------   ------------#############     
        ------------ P ------------#############     
         -----------   -----------#############      
          -----------------------#############       
           ---------------------#########   #        
             ------------------########## T          
              ----------------###########            
                 -----------###########              
                     -----#########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -9.46e+22   5.11e+22  -5.76e+22 
  5.11e+22   3.91e+22   1.09e+23 
 -5.76e+22   1.09e+23   5.55e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221006204313/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 255
      DIP = 55
     RAKE = -40
       MW = 4.73
       HS = 45.0

The NDK file is 20221006204313.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSW
SLUFM
 USGS/SLU Moment Tensor Solution
 ENS  2022/10/06 20:43:13:0  61.82 -147.57  34.1 4.8 Alaska
 
 Stations used:
   AK.BMR AK.CAST AK.CUT AK.DHY AK.DIV AK.EYAK AK.FID AK.FIRE 
   AK.GHO AK.GLB AK.GLI AK.GRNC AK.HARP AK.HDA AK.HIN AK.I21K 
   AK.I23K AK.J20K AK.J25K AK.J26L AK.K20K AK.K24K AK.KLU 
   AK.KNK AK.L20K AK.L22K AK.L26K AK.LOGN AK.MCAR AK.MCK 
   AK.MLY AK.NEA2 AK.P23K AK.PAX AK.PIN AK.POKR AK.PPLA AK.PWL 
   AK.RC01 AK.RIDG AK.SAW AK.SCM AK.SKN AK.SLK AK.SSN AK.SWD 
   AK.TABL AK.VRDI AK.WAX AK.WRH AT.PMR IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 1.57e+23 dyne-cm
  Mw = 4.73 
  Z  = 45 km
  Plane   Strike  Dip  Rake
   NP1       11    58   -138
   NP2      255    55   -40
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.57e+23      2     132
    N   0.00e+00     39      41
    P  -1.57e+23     51     225

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.91e+22
       Mxy    -1.09e+23
       Mxz     5.11e+22
       Myy     5.55e+22
       Myz     5.76e+22
       Mzz    -9.46e+22
                                                     
                                                     
                                                     
                                                     
                     ############--                  
                 #################-----              
              #####################-------           
             ######################--------          
           #########################---------        
          ##########################----------       
         ################-----------#######----      
        ############-----------------##########-     
        #########--------------------###########     
       #######----------------------#############    
       #####------------------------#############    
       ###--------------------------#############    
       ##---------------------------#############    
        ------------   ------------#############     
        ------------ P ------------#############     
         -----------   -----------#############      
          -----------------------#############       
           ---------------------#########   #        
             ------------------########## T          
              ----------------###########            
                 -----------###########              
                     -----#########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -9.46e+22   5.11e+22  -5.76e+22 
  5.11e+22   3.91e+22   1.09e+23 
 -5.76e+22   1.09e+23   5.55e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221006204313/index.html
	
W-phase Moment Tensor (Mww)
Moment 2.063e+16 N-m
Magnitude 4.81 Mww
Depth 40.5 km
Percent DC 75%
Half Duration 0.65 s
Catalog US
Data Source US 2
Contributor US 2

Nodal Planes
Plane Strike Dip Rake
NP1 243 42 -52
NP2 16 58 -119

Principal Axes
Axis Value Plunge Azimuth
T 2.187e+16 N-m 9 126
N -0.277e+16 N-m 25 32
P -1.910e+16 N-m 64 234

        


First motions and takeoff angles from an elocate run.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    20    45    60   3.90 0.2017
WVFGRD96    2.0    20    45    60   4.04 0.2768
WVFGRD96    3.0    30    40    75   4.13 0.3023
WVFGRD96    4.0     5    55    30   4.08 0.2982
WVFGRD96    5.0   355    85   -25   4.07 0.3082
WVFGRD96    6.0   355    85   -25   4.10 0.3214
WVFGRD96    7.0   350    75   -20   4.13 0.3338
WVFGRD96    8.0   350    75   -25   4.17 0.3404
WVFGRD96    9.0    95    65    25   4.20 0.3504
WVFGRD96   10.0    95    65    25   4.21 0.3640
WVFGRD96   11.0    90    70    20   4.23 0.3760
WVFGRD96   12.0    90    70    20   4.25 0.3879
WVFGRD96   13.0    90    70    20   4.26 0.3984
WVFGRD96   14.0    90    75    20   4.28 0.4084
WVFGRD96   15.0   265    70   -25   4.30 0.4197
WVFGRD96   16.0   265    70   -25   4.32 0.4329
WVFGRD96   17.0   265    70   -25   4.34 0.4456
WVFGRD96   18.0   265    70   -25   4.35 0.4579
WVFGRD96   19.0   265    70   -20   4.36 0.4707
WVFGRD96   20.0   265    70   -20   4.38 0.4841
WVFGRD96   21.0   265    70   -25   4.40 0.4969
WVFGRD96   22.0   265    70   -25   4.41 0.5089
WVFGRD96   23.0   265    70   -25   4.42 0.5204
WVFGRD96   24.0   265    70   -25   4.44 0.5316
WVFGRD96   25.0   265    70   -25   4.45 0.5425
WVFGRD96   26.0   265    70   -25   4.46 0.5523
WVFGRD96   27.0   265    70   -25   4.47 0.5616
WVFGRD96   28.0   265    70   -25   4.48 0.5692
WVFGRD96   29.0   260    65   -30   4.49 0.5761
WVFGRD96   30.0   265    65   -25   4.50 0.5863
WVFGRD96   31.0   265    65   -25   4.51 0.5964
WVFGRD96   32.0   265    65   -25   4.52 0.6055
WVFGRD96   33.0   265    65   -25   4.53 0.6116
WVFGRD96   34.0   260    60   -30   4.54 0.6157
WVFGRD96   35.0   260    60   -30   4.55 0.6179
WVFGRD96   36.0   260    60   -30   4.56 0.6171
WVFGRD96   37.0   260    60   -30   4.57 0.6146
WVFGRD96   38.0   260    60   -30   4.59 0.6102
WVFGRD96   39.0   265    65   -25   4.60 0.6053
WVFGRD96   40.0   255    55   -40   4.68 0.6420
WVFGRD96   41.0   255    55   -40   4.69 0.6491
WVFGRD96   42.0   255    55   -40   4.70 0.6536
WVFGRD96   43.0   255    55   -40   4.71 0.6564
WVFGRD96   44.0   255    55   -45   4.73 0.6577
WVFGRD96   45.0   255    55   -40   4.73 0.6582
WVFGRD96   46.0   255    55   -40   4.74 0.6574
WVFGRD96   47.0   255    55   -40   4.75 0.6552
WVFGRD96   48.0   255    55   -40   4.76 0.6524
WVFGRD96   49.0   255    55   -40   4.76 0.6486
WVFGRD96   50.0   255    55   -40   4.77 0.6445
WVFGRD96   51.0   255    55   -40   4.78 0.6394
WVFGRD96   52.0   255    55   -40   4.78 0.6338
WVFGRD96   53.0   255    55   -40   4.79 0.6280
WVFGRD96   54.0   255    55   -40   4.79 0.6214
WVFGRD96   55.0   255    55   -40   4.79 0.6140
WVFGRD96   56.0   255    55   -40   4.80 0.6069
WVFGRD96   57.0   260    60   -30   4.79 0.6003
WVFGRD96   58.0   260    60   -30   4.79 0.5950
WVFGRD96   59.0   260    60   -30   4.80 0.5890
WVFGRD96   60.0   260    60   -30   4.80 0.5835
WVFGRD96   61.0   260    60   -30   4.80 0.5780
WVFGRD96   62.0   260    60   -30   4.80 0.5714
WVFGRD96   63.0   260    60   -30   4.81 0.5656
WVFGRD96   64.0   260    60   -30   4.81 0.5603
WVFGRD96   65.0   260    65   -25   4.81 0.5550
WVFGRD96   66.0   260    65   -25   4.81 0.5507
WVFGRD96   67.0   260    65   -25   4.81 0.5463
WVFGRD96   68.0   260    65   -25   4.81 0.5424
WVFGRD96   69.0   260    65   -25   4.81 0.5373
WVFGRD96   70.0   260    65   -25   4.81 0.5335
WVFGRD96   71.0   260    65   -25   4.82 0.5297
WVFGRD96   72.0   265    70   -15   4.80 0.5266
WVFGRD96   73.0   265    70   -15   4.80 0.5245
WVFGRD96   74.0   265    70   -15   4.80 0.5230
WVFGRD96   75.0   265    70   -15   4.81 0.5206
WVFGRD96   76.0   265    70   -15   4.81 0.5189
WVFGRD96   77.0   265    70   -15   4.81 0.5172
WVFGRD96   78.0   265    70   -15   4.81 0.5154
WVFGRD96   79.0    90    70   -20   4.78 0.5095

The best solution is

WVFGRD96   45.0   255    55   -40   4.73 0.6582

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Apr 25 02:00:28 AM CDT 2024