The ANSS event ID is ak022ctqflju and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak022ctqflju/executive.
2022/10/06 19:30:50 61.850 -147.578 28.7 4.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2022/10/06 19:30:50:0 61.85 -147.58 28.7 4.1 Alaska Stations used: AK.BMR AK.CCB AK.CUT AK.DHY AK.EYAK AK.FID AK.GHO AK.GLI AK.HDA AK.HIN AK.K24K AK.KLU AK.KNK AK.L22K AK.MCAR AK.MCK AK.POKR AK.PWL AK.RC01 AK.SAW AK.SCM AK.SKN AK.SLK AT.PMR IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 1.66e+22 dyne-cm Mw = 4.08 Z = 71 km Plane Strike Dip Rake NP1 360 85 175 NP2 90 85 5 Principal Axes: Axis Value Plunge Azimuth T 1.66e+22 7 315 N 0.00e+00 83 135 P -1.66e+22 0 45 Moment Tensor: (dyne-cm) Component Value Mxx -2.51e+20 Mxy -1.65e+22 Mxz 1.42e+21 Myy -1.44e+15 Myz -1.44e+21 Mzz 2.51e+20 #######------- ###########----------- #############----------- P T #############----------- ## #############---------------- ###################----------------- ####################------------------ #####################------------------- #####################------------------- ######################-------------------- ######################-------------------- ---------#############-----------######### ----------------------#################### ---------------------################### ---------------------################### --------------------################## -------------------################# ------------------################ ----------------############## ---------------############# ------------########## -------####### Global CMT Convention Moment Tensor: R T P 2.51e+20 1.42e+21 1.44e+21 1.42e+21 -2.51e+20 1.65e+22 1.44e+21 1.65e+22 -1.44e+15 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221006193050/index.html |
STK = 90 DIP = 85 RAKE = 5 MW = 4.08 HS = 71.0
The NDK file is 20221006193050.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2022/10/06 19:30:50:0 61.85 -147.58 28.7 4.1 Alaska Stations used: AK.BMR AK.CCB AK.CUT AK.DHY AK.EYAK AK.FID AK.GHO AK.GLI AK.HDA AK.HIN AK.K24K AK.KLU AK.KNK AK.L22K AK.MCAR AK.MCK AK.POKR AK.PWL AK.RC01 AK.SAW AK.SCM AK.SKN AK.SLK AT.PMR IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 1.66e+22 dyne-cm Mw = 4.08 Z = 71 km Plane Strike Dip Rake NP1 360 85 175 NP2 90 85 5 Principal Axes: Axis Value Plunge Azimuth T 1.66e+22 7 315 N 0.00e+00 83 135 P -1.66e+22 0 45 Moment Tensor: (dyne-cm) Component Value Mxx -2.51e+20 Mxy -1.65e+22 Mxz 1.42e+21 Myy -1.44e+15 Myz -1.44e+21 Mzz 2.51e+20 #######------- ###########----------- #############----------- P T #############----------- ## #############---------------- ###################----------------- ####################------------------ #####################------------------- #####################------------------- ######################-------------------- ######################-------------------- ---------#############-----------######### ----------------------#################### ---------------------################### ---------------------################### --------------------################## -------------------################# ------------------################ ----------------############## ---------------############# ------------########## -------####### Global CMT Convention Moment Tensor: R T P 2.51e+20 1.42e+21 1.44e+21 1.42e+21 -2.51e+20 1.65e+22 1.44e+21 1.65e+22 -1.44e+15 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221006193050/index.html |
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 -5 90 15 3.07 0.2284 WVFGRD96 2.0 170 70 -25 3.23 0.3181 WVFGRD96 3.0 175 80 -20 3.27 0.3544 WVFGRD96 4.0 175 85 -20 3.31 0.3795 WVFGRD96 5.0 175 80 -15 3.35 0.3979 WVFGRD96 6.0 -5 90 15 3.37 0.4118 WVFGRD96 7.0 -5 90 15 3.41 0.4241 WVFGRD96 8.0 175 90 -15 3.44 0.4339 WVFGRD96 9.0 175 90 -10 3.46 0.4365 WVFGRD96 10.0 275 70 15 3.51 0.4474 WVFGRD96 11.0 275 70 15 3.54 0.4635 WVFGRD96 12.0 270 75 5 3.54 0.4788 WVFGRD96 13.0 270 75 0 3.56 0.4934 WVFGRD96 14.0 270 75 -10 3.58 0.5080 WVFGRD96 15.0 270 75 -10 3.60 0.5227 WVFGRD96 16.0 270 75 -10 3.62 0.5373 WVFGRD96 17.0 270 75 -10 3.64 0.5521 WVFGRD96 18.0 270 75 -10 3.65 0.5662 WVFGRD96 19.0 270 75 -10 3.67 0.5807 WVFGRD96 20.0 270 75 -10 3.68 0.5955 WVFGRD96 21.0 270 75 -10 3.70 0.6095 WVFGRD96 22.0 270 75 -10 3.71 0.6219 WVFGRD96 23.0 270 75 -10 3.72 0.6348 WVFGRD96 24.0 270 75 -10 3.73 0.6459 WVFGRD96 25.0 270 75 -10 3.74 0.6554 WVFGRD96 26.0 270 75 -10 3.75 0.6634 WVFGRD96 27.0 270 75 -10 3.76 0.6695 WVFGRD96 28.0 270 75 -10 3.77 0.6764 WVFGRD96 29.0 270 75 -10 3.78 0.6808 WVFGRD96 30.0 270 75 -10 3.78 0.6843 WVFGRD96 31.0 270 75 -10 3.79 0.6853 WVFGRD96 32.0 270 75 -10 3.80 0.6850 WVFGRD96 33.0 270 75 -10 3.81 0.6842 WVFGRD96 34.0 270 75 -10 3.82 0.6821 WVFGRD96 35.0 270 75 -10 3.82 0.6798 WVFGRD96 36.0 270 80 -10 3.83 0.6775 WVFGRD96 37.0 270 80 -10 3.85 0.6764 WVFGRD96 38.0 270 75 -5 3.86 0.6768 WVFGRD96 39.0 270 80 -5 3.87 0.6789 WVFGRD96 40.0 270 75 -15 3.91 0.6868 WVFGRD96 41.0 270 75 -15 3.93 0.6885 WVFGRD96 42.0 270 75 -15 3.94 0.6891 WVFGRD96 43.0 270 75 -15 3.95 0.6900 WVFGRD96 44.0 270 75 -15 3.96 0.6901 WVFGRD96 45.0 270 75 -15 3.97 0.6900 WVFGRD96 46.0 270 75 -15 3.98 0.6892 WVFGRD96 47.0 270 75 -15 3.98 0.6877 WVFGRD96 48.0 270 75 -15 3.99 0.6880 WVFGRD96 49.0 270 75 -10 3.99 0.6880 WVFGRD96 50.0 270 75 -10 4.00 0.6887 WVFGRD96 51.0 270 75 -10 4.00 0.6891 WVFGRD96 52.0 270 75 -10 4.01 0.6910 WVFGRD96 53.0 270 75 -10 4.01 0.6912 WVFGRD96 54.0 270 75 -10 4.02 0.6914 WVFGRD96 55.0 270 75 -10 4.03 0.6924 WVFGRD96 56.0 270 75 -10 4.03 0.6917 WVFGRD96 57.0 270 80 -10 4.03 0.6925 WVFGRD96 58.0 270 80 -10 4.04 0.6928 WVFGRD96 59.0 270 80 -10 4.04 0.6925 WVFGRD96 60.0 270 80 -10 4.05 0.6931 WVFGRD96 61.0 270 80 -10 4.05 0.6915 WVFGRD96 62.0 270 80 -5 4.05 0.6920 WVFGRD96 63.0 270 80 -5 4.05 0.6933 WVFGRD96 64.0 270 90 -5 4.05 0.6917 WVFGRD96 65.0 90 85 5 4.06 0.6934 WVFGRD96 66.0 90 85 5 4.06 0.6936 WVFGRD96 67.0 90 85 5 4.06 0.6934 WVFGRD96 68.0 90 85 5 4.07 0.6933 WVFGRD96 69.0 90 85 5 4.07 0.6939 WVFGRD96 70.0 90 85 5 4.07 0.6940 WVFGRD96 71.0 90 85 5 4.08 0.6945 WVFGRD96 72.0 90 85 5 4.08 0.6932 WVFGRD96 73.0 90 85 5 4.08 0.6941 WVFGRD96 74.0 90 85 5 4.09 0.6934 WVFGRD96 75.0 90 85 5 4.09 0.6940 WVFGRD96 76.0 90 85 5 4.09 0.6929 WVFGRD96 77.0 90 85 5 4.09 0.6933 WVFGRD96 78.0 90 85 5 4.10 0.6931 WVFGRD96 79.0 90 85 5 4.10 0.6938
The best solution is
WVFGRD96 71.0 90 85 5 4.08 0.6945
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00