Location

Location ANSS

The ANSS event ID is ak022cs4ljsx and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak022cs4ljsx/executive.

2022/10/05 22:16:48 62.972 -150.444 98.8 4.8 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2022/10/05 22:16:48:0  62.97 -150.44  98.8 4.8 Alaska
 
 Stations used:
   AK.BPAW AK.CAST AK.CCB AK.CUT AK.DHY AK.FID AK.GHO AK.H21K 
   AK.H22K AK.H23K AK.H24K AK.HDA AK.I21K AK.I23K AK.J19K 
   AK.J20K AK.J25K AK.K20K AK.K24K AK.KLU AK.KNK AK.L20K 
   AK.L22K AK.L26K AK.MCK AK.MLY AK.NEA2 AK.PAX AK.POKR 
   AK.PPLA AK.RC01 AK.RIDG AK.SAW AK.SCM AK.SKN AK.SSN AK.WRH 
   AT.PMR AV.SPCP AV.STLK IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -50 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.93e+23 dyne-cm
  Mw = 4.79 
  Z  = 114 km
  Plane   Strike  Dip  Rake
   NP1       11    86   135
   NP2      105    45     5
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.93e+23     33     318
    N   0.00e+00     45     188
    P  -1.93e+23     27      67

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     5.22e+22
       Mxy    -1.22e+23
       Mxz     3.51e+22
       Myy    -6.90e+22
       Myz    -1.31e+23
       Mzz     1.68e+22
                                                     
                                                     
                                                     
                                                     
                     ###########---                  
                 ###############-------              
              ##################----------           
             ##################------------          
           ######   ###########--------------        
          ####### T ###########---------------       
         ########   ##########-----------   ---      
        ######################----------- P ----     
        ######################-----------   ----     
       --####################--------------------    
       ---###################--------------------    
       ----##################--------------------    
       -----################---------------------    
        ------##############--------------------     
        --------############-------------------#     
         ----------########------------------##      
          -------------####--------------#####       
           ---------------###################        
             -------------#################          
              -----------#################           
                 --------##############              
                     ---###########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.68e+22   3.51e+22   1.31e+23 
  3.51e+22   5.22e+22   1.22e+23 
  1.31e+23   1.22e+23  -6.90e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221005221648/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 105
      DIP = 45
     RAKE = 5
       MW = 4.79
       HS = 114.0

The NDK file is 20221005221648.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2022/10/05 22:16:48:0  62.97 -150.44  98.8 4.8 Alaska
 
 Stations used:
   AK.BPAW AK.CAST AK.CCB AK.CUT AK.DHY AK.FID AK.GHO AK.H21K 
   AK.H22K AK.H23K AK.H24K AK.HDA AK.I21K AK.I23K AK.J19K 
   AK.J20K AK.J25K AK.K20K AK.K24K AK.KLU AK.KNK AK.L20K 
   AK.L22K AK.L26K AK.MCK AK.MLY AK.NEA2 AK.PAX AK.POKR 
   AK.PPLA AK.RC01 AK.RIDG AK.SAW AK.SCM AK.SKN AK.SSN AK.WRH 
   AT.PMR AV.SPCP AV.STLK IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -50 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.93e+23 dyne-cm
  Mw = 4.79 
  Z  = 114 km
  Plane   Strike  Dip  Rake
   NP1       11    86   135
   NP2      105    45     5
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.93e+23     33     318
    N   0.00e+00     45     188
    P  -1.93e+23     27      67

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     5.22e+22
       Mxy    -1.22e+23
       Mxz     3.51e+22
       Myy    -6.90e+22
       Myz    -1.31e+23
       Mzz     1.68e+22
                                                     
                                                     
                                                     
                                                     
                     ###########---                  
                 ###############-------              
              ##################----------           
             ##################------------          
           ######   ###########--------------        
          ####### T ###########---------------       
         ########   ##########-----------   ---      
        ######################----------- P ----     
        ######################-----------   ----     
       --####################--------------------    
       ---###################--------------------    
       ----##################--------------------    
       -----################---------------------    
        ------##############--------------------     
        --------############-------------------#     
         ----------########------------------##      
          -------------####--------------#####       
           ---------------###################        
             -------------#################          
              -----------#################           
                 --------##############              
                     ---###########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.68e+22   3.51e+22   1.31e+23 
  3.51e+22   5.22e+22   1.22e+23 
  1.31e+23   1.22e+23  -6.90e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221005221648/index.html
	
Regional Moment Tensor (Mwr)
Moment 2.149e+16 N-m
Magnitude 4.82 Mwr
Depth 106.0 km
Percent DC 95%
Half Duration -
Catalog US
Data Source US 2
Contributor US 2

Nodal Planes
Plane Strike Dip Rake
NP1 11 85 139
NP2 106 49 6

Principal Axes
Axis Value Plunge Azimuth
T 2.124e+16 N-m 32 320
N 0.051e+16 N-m 48 186
P -2.175e+16 N-m 24 66

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -50 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0     5    65   -25   3.82 0.1721
WVFGRD96    4.0    10    75    15   3.89 0.1932
WVFGRD96    6.0   195    75    20   3.96 0.2118
WVFGRD96    8.0   190    75    20   4.04 0.2239
WVFGRD96   10.0   190    75    15   4.08 0.2257
WVFGRD96   12.0   190    80    15   4.12 0.2226
WVFGRD96   14.0   190    80    15   4.15 0.2165
WVFGRD96   16.0   190    85    15   4.17 0.2075
WVFGRD96   18.0   190    85    15   4.19 0.1958
WVFGRD96   20.0   275    75   -10   4.22 0.2009
WVFGRD96   22.0   275    70   -10   4.26 0.2176
WVFGRD96   24.0   275    75   -10   4.28 0.2346
WVFGRD96   26.0   275    75    -5   4.31 0.2512
WVFGRD96   28.0   275    75    -5   4.33 0.2674
WVFGRD96   30.0   275    75    -5   4.36 0.2839
WVFGRD96   32.0   100    90     0   4.36 0.3022
WVFGRD96   34.0   100    90     0   4.39 0.3240
WVFGRD96   36.0   100    85     0   4.41 0.3441
WVFGRD96   38.0   100    80     0   4.45 0.3636
WVFGRD96   40.0   100    75     0   4.50 0.3841
WVFGRD96   42.0   100    80     0   4.53 0.3886
WVFGRD96   44.0   100    75     5   4.55 0.3911
WVFGRD96   46.0   100    75     5   4.57 0.3923
WVFGRD96   48.0   100    75     0   4.58 0.3986
WVFGRD96   50.0   100    70     5   4.60 0.4049
WVFGRD96   52.0   100    70     0   4.61 0.4104
WVFGRD96   54.0   100    65     0   4.62 0.4185
WVFGRD96   56.0   100    65     0   4.63 0.4269
WVFGRD96   58.0   100    60     0   4.64 0.4365
WVFGRD96   60.0   100    60     0   4.65 0.4461
WVFGRD96   62.0   100    55     0   4.66 0.4561
WVFGRD96   64.0   100    55     0   4.67 0.4662
WVFGRD96   66.0   100    55     0   4.67 0.4756
WVFGRD96   68.0   100    55     0   4.68 0.4854
WVFGRD96   70.0   105    50    10   4.70 0.4945
WVFGRD96   72.0   105    50    10   4.70 0.5031
WVFGRD96   74.0   105    50    10   4.71 0.5097
WVFGRD96   76.0   105    50    10   4.72 0.5176
WVFGRD96   78.0   105    55    10   4.72 0.5256
WVFGRD96   80.0   105    55    10   4.73 0.5317
WVFGRD96   82.0   105    55    10   4.73 0.5389
WVFGRD96   84.0   105    55    10   4.74 0.5444
WVFGRD96   86.0   105    55    10   4.74 0.5510
WVFGRD96   88.0   105    55    10   4.75 0.5570
WVFGRD96   90.0   105    55    10   4.75 0.5604
WVFGRD96   92.0   105    55    10   4.75 0.5655
WVFGRD96   94.0   105    50    10   4.76 0.5696
WVFGRD96   96.0   105    50    10   4.76 0.5724
WVFGRD96   98.0   105    50    10   4.77 0.5767
WVFGRD96  100.0   105    50    10   4.77 0.5782
WVFGRD96  102.0   105    50    10   4.77 0.5804
WVFGRD96  104.0   105    45    10   4.78 0.5821
WVFGRD96  106.0   105    45    10   4.78 0.5828
WVFGRD96  108.0   105    45     5   4.78 0.5835
WVFGRD96  110.0   105    45     5   4.79 0.5853
WVFGRD96  112.0   105    45     5   4.79 0.5850
WVFGRD96  114.0   105    45     5   4.79 0.5862
WVFGRD96  116.0   105    45     5   4.79 0.5846
WVFGRD96  118.0   105    45     5   4.80 0.5856
WVFGRD96  120.0   105    45     5   4.80 0.5838
WVFGRD96  122.0   105    45     5   4.80 0.5836
WVFGRD96  124.0   105    45     5   4.80 0.5820
WVFGRD96  126.0   105    45     5   4.81 0.5810
WVFGRD96  128.0   105    45     5   4.81 0.5775
WVFGRD96  130.0   100    45     0   4.81 0.5750
WVFGRD96  132.0   100    45     0   4.81 0.5718
WVFGRD96  134.0   100    45     0   4.81 0.5691
WVFGRD96  136.0   100    45     0   4.81 0.5660
WVFGRD96  138.0   100    45     0   4.81 0.5643
WVFGRD96  140.0   100    45     0   4.82 0.5597
WVFGRD96  142.0   100    45     0   4.82 0.5576
WVFGRD96  144.0   100    45     0   4.82 0.5547
WVFGRD96  146.0   100    45     0   4.82 0.5522
WVFGRD96  148.0   100    45     0   4.82 0.5508

The best solution is

WVFGRD96  114.0   105    45     5   4.79 0.5862

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -50 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Apr 25 01:40:58 AM CDT 2024