The ANSS event ID is ak022crxd45r and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak022crxd45r/executive.
2022/10/05 10:01:40 61.748 -149.768 42.5 3.7 Alaska
USGS/SLU Moment Tensor Solution ENS 2022/10/05 10:01:40:0 61.75 -149.77 42.5 3.7 Alaska Stations used: AK.CUT AK.DHY AK.FIRE AK.GHO AK.GLI AK.KNK AK.RC01 AK.SAW AK.SCM AK.SSN AT.PMR Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 7.00e+21 dyne-cm Mw = 3.83 Z = 49 km Plane Strike Dip Rake NP1 275 55 -50 NP2 39 51 -133 Principal Axes: Axis Value Plunge Azimuth T 7.00e+21 2 338 N 0.00e+00 32 69 P -7.00e+21 58 244 Moment Tensor: (dyne-cm) Component Value Mxx 5.64e+21 Mxy -3.19e+21 Mxz 1.60e+21 Myy -6.02e+20 Myz 2.73e+21 Mzz -5.04e+21 T ############ ### ################ ###########################- #############################- ###############################--- ################################---- ##########-------------##########----- ######------------------------####------ ##-------------------------------#------ #---------------------------------####---- ---------------------------------#######-- ------------ -----------------#########- ------------ P ----------------########### ----------- ---------------########### ---------------------------############# -------------------------############# ----------------------############## ------------------################ -------------################# -------##################### ###################### ############## Global CMT Convention Moment Tensor: R T P -5.04e+21 1.60e+21 -2.73e+21 1.60e+21 5.64e+21 3.19e+21 -2.73e+21 3.19e+21 -6.02e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221005100140/index.html |
STK = 275 DIP = 55 RAKE = -50 MW = 3.83 HS = 49.0
The NDK file is 20221005100140.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 160 45 90 3.07 0.1743 WVFGRD96 2.0 340 45 90 3.23 0.2529 WVFGRD96 3.0 310 45 40 3.23 0.2674 WVFGRD96 4.0 300 50 15 3.23 0.2947 WVFGRD96 5.0 300 50 15 3.26 0.3182 WVFGRD96 6.0 300 55 15 3.28 0.3388 WVFGRD96 7.0 295 60 0 3.30 0.3568 WVFGRD96 8.0 300 55 10 3.36 0.3725 WVFGRD96 9.0 295 55 0 3.37 0.3828 WVFGRD96 10.0 295 60 0 3.39 0.3922 WVFGRD96 11.0 295 60 0 3.41 0.3995 WVFGRD96 12.0 295 60 0 3.42 0.4048 WVFGRD96 13.0 295 60 0 3.44 0.4084 WVFGRD96 14.0 295 60 0 3.45 0.4108 WVFGRD96 15.0 295 60 5 3.46 0.4127 WVFGRD96 16.0 295 60 5 3.48 0.4149 WVFGRD96 17.0 295 60 5 3.49 0.4165 WVFGRD96 18.0 295 60 5 3.50 0.4182 WVFGRD96 19.0 295 60 5 3.51 0.4211 WVFGRD96 20.0 295 60 5 3.52 0.4248 WVFGRD96 21.0 295 60 5 3.53 0.4286 WVFGRD96 22.0 295 60 0 3.54 0.4328 WVFGRD96 23.0 295 65 -5 3.55 0.4375 WVFGRD96 24.0 295 65 -5 3.56 0.4413 WVFGRD96 25.0 295 65 -10 3.57 0.4462 WVFGRD96 26.0 290 60 -15 3.58 0.4505 WVFGRD96 27.0 290 60 -15 3.59 0.4557 WVFGRD96 28.0 290 60 -15 3.60 0.4598 WVFGRD96 29.0 290 60 -20 3.61 0.4641 WVFGRD96 30.0 290 60 -20 3.62 0.4679 WVFGRD96 31.0 290 60 -20 3.63 0.4711 WVFGRD96 32.0 290 60 -20 3.63 0.4726 WVFGRD96 33.0 285 60 -30 3.64 0.4747 WVFGRD96 34.0 285 60 -30 3.65 0.4760 WVFGRD96 35.0 285 60 -30 3.66 0.4780 WVFGRD96 36.0 285 60 -30 3.66 0.4781 WVFGRD96 37.0 285 60 -30 3.67 0.4771 WVFGRD96 38.0 285 60 -30 3.68 0.4757 WVFGRD96 39.0 285 65 -35 3.69 0.4734 WVFGRD96 40.0 280 50 -35 3.77 0.4828 WVFGRD96 41.0 280 55 -40 3.77 0.4820 WVFGRD96 42.0 280 55 -40 3.78 0.4818 WVFGRD96 43.0 280 55 -45 3.80 0.4820 WVFGRD96 44.0 275 55 -50 3.80 0.4841 WVFGRD96 45.0 275 55 -50 3.81 0.4848 WVFGRD96 46.0 275 55 -50 3.82 0.4857 WVFGRD96 47.0 275 55 -50 3.82 0.4862 WVFGRD96 48.0 275 55 -50 3.83 0.4863 WVFGRD96 49.0 275 55 -50 3.83 0.4863 WVFGRD96 50.0 275 55 -50 3.83 0.4851 WVFGRD96 51.0 275 55 -50 3.84 0.4862 WVFGRD96 52.0 275 55 -50 3.84 0.4861 WVFGRD96 53.0 275 55 -50 3.85 0.4846 WVFGRD96 54.0 275 55 -50 3.85 0.4846 WVFGRD96 55.0 270 55 -60 3.86 0.4837 WVFGRD96 56.0 270 55 -60 3.86 0.4836 WVFGRD96 57.0 270 55 -60 3.86 0.4829 WVFGRD96 58.0 270 55 -60 3.87 0.4820 WVFGRD96 59.0 270 55 -60 3.87 0.4822 WVFGRD96 60.0 270 55 -60 3.87 0.4806 WVFGRD96 61.0 270 55 -60 3.87 0.4800 WVFGRD96 62.0 275 60 -55 3.86 0.4791 WVFGRD96 63.0 275 60 -55 3.87 0.4776 WVFGRD96 64.0 275 60 -55 3.87 0.4772 WVFGRD96 65.0 275 60 -55 3.87 0.4757 WVFGRD96 66.0 275 60 -55 3.87 0.4751 WVFGRD96 67.0 270 60 -65 3.88 0.4736 WVFGRD96 68.0 270 60 -65 3.88 0.4735 WVFGRD96 69.0 270 60 -65 3.88 0.4728 WVFGRD96 70.0 270 60 -65 3.88 0.4709 WVFGRD96 71.0 270 60 -65 3.88 0.4706 WVFGRD96 72.0 270 60 -65 3.89 0.4694 WVFGRD96 73.0 265 60 -70 3.88 0.4681 WVFGRD96 74.0 265 60 -70 3.89 0.4669 WVFGRD96 75.0 265 60 -70 3.89 0.4660 WVFGRD96 76.0 265 60 -70 3.89 0.4651 WVFGRD96 77.0 265 60 -70 3.89 0.4632 WVFGRD96 78.0 265 60 -70 3.89 0.4626 WVFGRD96 79.0 265 60 -70 3.89 0.4611 WVFGRD96 80.0 265 60 -70 3.90 0.4597 WVFGRD96 81.0 265 60 -70 3.90 0.4580 WVFGRD96 82.0 265 60 -75 3.90 0.4566 WVFGRD96 83.0 260 60 -80 3.90 0.4561 WVFGRD96 84.0 260 60 -80 3.91 0.4537 WVFGRD96 85.0 260 60 -80 3.91 0.4528 WVFGRD96 86.0 260 60 -80 3.91 0.4512 WVFGRD96 87.0 260 60 -80 3.91 0.4502 WVFGRD96 88.0 260 60 -80 3.91 0.4484 WVFGRD96 89.0 260 60 -80 3.91 0.4461 WVFGRD96 90.0 260 60 -80 3.91 0.4452 WVFGRD96 91.0 260 60 -80 3.92 0.4434 WVFGRD96 92.0 260 60 -80 3.92 0.4416 WVFGRD96 93.0 260 60 -80 3.92 0.4397 WVFGRD96 94.0 260 60 -80 3.92 0.4377 WVFGRD96 95.0 260 60 -80 3.92 0.4366 WVFGRD96 96.0 260 60 -80 3.92 0.4341 WVFGRD96 97.0 260 60 -80 3.92 0.4322 WVFGRD96 98.0 260 60 -80 3.92 0.4306 WVFGRD96 99.0 260 60 -80 3.93 0.4286
The best solution is
WVFGRD96 49.0 275 55 -50 3.83 0.4863
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00