The ANSS event ID is ak022crtctc4 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak022crtctc4/executive.
2022/10/05 03:28:15 59.965 -152.919 117.6 4.6 Alaska
USGS/SLU Moment Tensor Solution ENS 2022/10/05 03:28:15:0 59.97 -152.92 117.6 4.6 Alaska Stations used: AK.BRLK AK.CAPN AK.CNP AK.EYAK AK.GHO AK.GLI AK.K20K AK.KNK AK.L17K AK.L19K AK.L20K AK.N18K AK.N19K AK.O18K AK.O19K AK.P17K AK.P23K AK.PPLA AK.PWL AK.Q19K AK.RC01 AK.SLK AK.SSN AK.SWD AT.OHAK AT.PMR AV.ACH AV.SPCP II.KDAK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.00e+23 dyne-cm Mw = 4.60 Z = 122 km Plane Strike Dip Rake NP1 70 65 45 NP2 317 50 147 Principal Axes: Axis Value Plunge Azimuth T 1.00e+23 49 291 N 0.00e+00 40 93 P -1.00e+23 9 190 Moment Tensor: (dyne-cm) Component Value Mxx -8.90e+22 Mxy -3.17e+22 Mxz 3.25e+22 Myy 3.49e+22 Myz -4.36e+22 Mzz 5.42e+22 -------------- ---------------------- ---------------------------- ############------------------ ##################---------------- ######################-------------- #########################------------- ############################-----------# ######### #################---------## ########## T ###################-----##### ########## ####################--####### #################################-######## ##############################----######## #########################---------###### #####################-------------###### ----#######-----------------------#### ---------------------------------### --------------------------------## -----------------------------# ---------------------------- ------ ------------- -- P --------- Global CMT Convention Moment Tensor: R T P 5.42e+22 3.25e+22 4.36e+22 3.25e+22 -8.90e+22 3.17e+22 4.36e+22 3.17e+22 3.49e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221005032815/index.html |
STK = 70 DIP = 65 RAKE = 45 MW = 4.60 HS = 122.0
The NDK file is 20221005032815.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2022/10/05 03:28:15:0 59.97 -152.92 117.6 4.6 Alaska Stations used: AK.BRLK AK.CAPN AK.CNP AK.EYAK AK.GHO AK.GLI AK.K20K AK.KNK AK.L17K AK.L19K AK.L20K AK.N18K AK.N19K AK.O18K AK.O19K AK.P17K AK.P23K AK.PPLA AK.PWL AK.Q19K AK.RC01 AK.SLK AK.SSN AK.SWD AT.OHAK AT.PMR AV.ACH AV.SPCP II.KDAK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.00e+23 dyne-cm Mw = 4.60 Z = 122 km Plane Strike Dip Rake NP1 70 65 45 NP2 317 50 147 Principal Axes: Axis Value Plunge Azimuth T 1.00e+23 49 291 N 0.00e+00 40 93 P -1.00e+23 9 190 Moment Tensor: (dyne-cm) Component Value Mxx -8.90e+22 Mxy -3.17e+22 Mxz 3.25e+22 Myy 3.49e+22 Myz -4.36e+22 Mzz 5.42e+22 -------------- ---------------------- ---------------------------- ############------------------ ##################---------------- ######################-------------- #########################------------- ############################-----------# ######### #################---------## ########## T ###################-----##### ########## ####################--####### #################################-######## ##############################----######## #########################---------###### #####################-------------###### ----#######-----------------------#### ---------------------------------### --------------------------------## -----------------------------# ---------------------------- ------ ------------- -- P --------- Global CMT Convention Moment Tensor: R T P 5.42e+22 3.25e+22 4.36e+22 3.25e+22 -8.90e+22 3.17e+22 4.36e+22 3.17e+22 3.49e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20221005032815/index.html |
Regional Moment Tensor (Mwr) Moment 9.949e+15 N-m Magnitude 4.60 Mwr Depth 114.0 km Percent DC 92% Half Duration - Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 325 52 145 NP2 78 64 44 Principal Axes Axis Value Plunge Azimuth T 10.134e+15 N-m 49 297 N -0.381e+15 N-m 40 103 P -9.753e+15 N-m 7 199 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 105 45 -90 3.75 0.1532 WVFGRD96 4.0 325 80 35 3.72 0.1496 WVFGRD96 6.0 325 90 -35 3.77 0.1685 WVFGRD96 8.0 145 90 40 3.86 0.1832 WVFGRD96 10.0 145 85 35 3.90 0.1899 WVFGRD96 12.0 320 90 -35 3.93 0.1881 WVFGRD96 14.0 140 90 35 3.95 0.1799 WVFGRD96 16.0 140 90 35 3.97 0.1681 WVFGRD96 18.0 50 60 -5 4.00 0.1618 WVFGRD96 20.0 260 75 55 4.03 0.1668 WVFGRD96 22.0 255 70 50 4.07 0.1750 WVFGRD96 24.0 255 70 45 4.10 0.1836 WVFGRD96 26.0 255 70 45 4.13 0.1926 WVFGRD96 28.0 250 70 40 4.15 0.2003 WVFGRD96 30.0 250 70 40 4.17 0.2055 WVFGRD96 32.0 250 70 40 4.18 0.2047 WVFGRD96 34.0 245 75 35 4.19 0.2013 WVFGRD96 36.0 250 75 40 4.21 0.1989 WVFGRD96 38.0 60 80 -10 4.22 0.1946 WVFGRD96 40.0 250 75 45 4.33 0.2044 WVFGRD96 42.0 60 75 -5 4.31 0.2018 WVFGRD96 44.0 60 75 -5 4.34 0.2038 WVFGRD96 46.0 60 75 -10 4.36 0.2047 WVFGRD96 48.0 60 75 -10 4.38 0.2048 WVFGRD96 50.0 60 75 -10 4.39 0.2049 WVFGRD96 52.0 220 55 -20 4.41 0.2097 WVFGRD96 54.0 225 60 -20 4.42 0.2165 WVFGRD96 56.0 225 60 -20 4.43 0.2240 WVFGRD96 58.0 225 60 -20 4.44 0.2302 WVFGRD96 60.0 65 75 15 4.46 0.2422 WVFGRD96 62.0 70 70 30 4.48 0.2569 WVFGRD96 64.0 75 65 45 4.50 0.2713 WVFGRD96 66.0 75 65 45 4.51 0.2866 WVFGRD96 68.0 75 65 45 4.52 0.3017 WVFGRD96 70.0 75 65 45 4.53 0.3142 WVFGRD96 72.0 75 65 45 4.54 0.3267 WVFGRD96 74.0 75 65 45 4.54 0.3377 WVFGRD96 76.0 70 65 40 4.54 0.3484 WVFGRD96 78.0 70 65 40 4.55 0.3581 WVFGRD96 80.0 70 65 40 4.55 0.3658 WVFGRD96 82.0 70 65 40 4.56 0.3743 WVFGRD96 84.0 70 65 40 4.56 0.3816 WVFGRD96 86.0 70 65 40 4.57 0.3885 WVFGRD96 88.0 70 65 40 4.57 0.3949 WVFGRD96 90.0 70 65 40 4.57 0.4012 WVFGRD96 92.0 70 65 40 4.58 0.4069 WVFGRD96 94.0 70 65 40 4.58 0.4114 WVFGRD96 96.0 70 65 40 4.58 0.4159 WVFGRD96 98.0 70 65 45 4.58 0.4208 WVFGRD96 100.0 70 65 45 4.59 0.4256 WVFGRD96 102.0 70 65 45 4.59 0.4303 WVFGRD96 104.0 70 65 45 4.59 0.4347 WVFGRD96 106.0 70 65 45 4.59 0.4388 WVFGRD96 108.0 70 65 45 4.59 0.4421 WVFGRD96 110.0 70 65 45 4.60 0.4448 WVFGRD96 112.0 70 65 45 4.60 0.4469 WVFGRD96 114.0 70 65 45 4.60 0.4485 WVFGRD96 116.0 70 65 45 4.60 0.4493 WVFGRD96 118.0 70 65 45 4.60 0.4501 WVFGRD96 120.0 70 65 45 4.60 0.4510 WVFGRD96 122.0 70 65 45 4.60 0.4514 WVFGRD96 124.0 75 65 50 4.60 0.4513 WVFGRD96 126.0 75 65 50 4.60 0.4507 WVFGRD96 128.0 75 65 50 4.60 0.4501 WVFGRD96 130.0 75 65 50 4.60 0.4492 WVFGRD96 132.0 75 65 50 4.61 0.4478 WVFGRD96 134.0 75 65 50 4.61 0.4458 WVFGRD96 136.0 75 65 50 4.61 0.4448 WVFGRD96 138.0 75 65 55 4.61 0.4431 WVFGRD96 140.0 75 65 55 4.61 0.4409 WVFGRD96 142.0 75 65 55 4.61 0.4392 WVFGRD96 144.0 75 65 55 4.61 0.4367 WVFGRD96 146.0 75 65 55 4.61 0.4358 WVFGRD96 148.0 75 65 55 4.61 0.4336
The best solution is
WVFGRD96 122.0 70 65 45 4.60 0.4514
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00