The ANSS event ID is ak022c9tj4z7 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak022c9tj4z7/executive.
2022/09/24 15:18:54 61.492 -145.589 41.4 4.8 Alaska
USGS/SLU Moment Tensor Solution ENS 2022/09/24 15:18:54:0 61.49 -145.59 41.4 4.8 Alaska Stations used: AK.BARN AK.BERG AK.BMR AK.BRLK AK.CRQ AK.DHY AK.DIV AK.EYAK AK.FID AK.GHO AK.GLB AK.GLI AK.HIN AK.K24K AK.KAI AK.KLU AK.KNK AK.L26K AK.M26K AK.M27K AK.MCAR AK.P23K AK.PAX AK.PWL AK.RAG AK.RC01 AK.RND AK.SAW AK.SCM AK.SLK AK.SUCK AK.TABL AK.TGL AK.VRDI AK.WRH AT.MENT AT.PMR AV.SPCP Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 1.51e+23 dyne-cm Mw = 4.72 Z = 42 km Plane Strike Dip Rake NP1 55 85 30 NP2 322 60 174 Principal Axes: Axis Value Plunge Azimuth T 1.51e+23 24 283 N 0.00e+00 60 64 P -1.51e+23 17 185 Moment Tensor: (dyne-cm) Component Value Mxx -1.32e+23 Mxy -3.85e+22 Mxz 5.45e+22 Myy 1.18e+23 Myz -5.21e+22 Mzz 1.31e+22 -------------- ---------------------- #####----------------------- ##########-------------------- ###############------------------- ###################--------------### ######################----------###### ########################-------######### ### ####################--############ #### T ####################-############## #### ##################-----############ ######################---------########### ###################-------------########## ###############----------------######### #############-------------------######## #########----------------------####### ####---------------------------##### ------------------------------#### ----------------------------## ----------- -------------# -------- P ----------- ---- ------- Global CMT Convention Moment Tensor: R T P 1.31e+22 5.45e+22 5.21e+22 5.45e+22 -1.32e+23 3.85e+22 5.21e+22 3.85e+22 1.18e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220924151854/index.html |
STK = 55 DIP = 85 RAKE = 30 MW = 4.72 HS = 42.0
The NDK file is 20220924151854.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 135 70 -20 3.89 0.1924 WVFGRD96 2.0 130 65 -30 4.03 0.2529 WVFGRD96 3.0 320 75 -5 4.05 0.2748 WVFGRD96 4.0 235 85 15 4.11 0.3028 WVFGRD96 5.0 235 80 25 4.15 0.3252 WVFGRD96 6.0 235 80 25 4.18 0.3443 WVFGRD96 7.0 235 80 20 4.21 0.3596 WVFGRD96 8.0 235 80 25 4.25 0.3739 WVFGRD96 9.0 235 80 25 4.27 0.3783 WVFGRD96 10.0 230 75 -25 4.29 0.3810 WVFGRD96 11.0 230 80 -25 4.30 0.3908 WVFGRD96 12.0 230 80 -25 4.32 0.3990 WVFGRD96 13.0 235 85 -25 4.34 0.4048 WVFGRD96 14.0 235 85 -25 4.35 0.4097 WVFGRD96 15.0 235 85 -25 4.36 0.4136 WVFGRD96 16.0 235 85 -25 4.38 0.4172 WVFGRD96 17.0 235 85 -25 4.39 0.4202 WVFGRD96 18.0 235 85 -25 4.40 0.4225 WVFGRD96 19.0 235 85 -25 4.41 0.4249 WVFGRD96 20.0 230 80 -25 4.42 0.4277 WVFGRD96 21.0 230 85 -30 4.43 0.4308 WVFGRD96 22.0 230 85 -30 4.44 0.4351 WVFGRD96 23.0 230 85 -30 4.45 0.4402 WVFGRD96 24.0 50 90 30 4.46 0.4455 WVFGRD96 25.0 230 90 -30 4.48 0.4520 WVFGRD96 26.0 50 90 30 4.49 0.4592 WVFGRD96 27.0 50 85 30 4.50 0.4693 WVFGRD96 28.0 230 90 -30 4.51 0.4788 WVFGRD96 29.0 230 90 -30 4.52 0.4885 WVFGRD96 30.0 50 85 30 4.54 0.4994 WVFGRD96 31.0 50 85 30 4.55 0.5100 WVFGRD96 32.0 50 85 30 4.56 0.5203 WVFGRD96 33.0 230 90 -25 4.57 0.5254 WVFGRD96 34.0 50 85 25 4.58 0.5361 WVFGRD96 35.0 230 90 -25 4.59 0.5392 WVFGRD96 36.0 55 85 25 4.61 0.5492 WVFGRD96 37.0 230 90 -25 4.62 0.5500 WVFGRD96 38.0 230 90 -25 4.63 0.5537 WVFGRD96 39.0 230 90 -20 4.65 0.5580 WVFGRD96 40.0 55 85 35 4.71 0.5665 WVFGRD96 41.0 55 85 30 4.71 0.5692 WVFGRD96 42.0 55 85 30 4.72 0.5703 WVFGRD96 43.0 230 90 -30 4.73 0.5665 WVFGRD96 44.0 230 90 -30 4.74 0.5661 WVFGRD96 45.0 55 85 30 4.75 0.5688 WVFGRD96 46.0 230 90 -30 4.75 0.5626 WVFGRD96 47.0 230 90 -30 4.76 0.5603 WVFGRD96 48.0 55 85 25 4.76 0.5626 WVFGRD96 49.0 230 90 -30 4.77 0.5560 WVFGRD96 50.0 235 90 -25 4.78 0.5531 WVFGRD96 51.0 55 85 25 4.78 0.5551 WVFGRD96 52.0 55 85 25 4.78 0.5525 WVFGRD96 53.0 55 85 25 4.79 0.5496 WVFGRD96 54.0 55 85 25 4.79 0.5463 WVFGRD96 55.0 55 85 25 4.80 0.5428 WVFGRD96 56.0 230 90 -25 4.80 0.5355 WVFGRD96 57.0 230 90 -25 4.80 0.5325 WVFGRD96 58.0 55 80 25 4.80 0.5339 WVFGRD96 59.0 230 90 -25 4.81 0.5267
The best solution is
WVFGRD96 42.0 55 85 30 4.72 0.5703
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00