The ANSS event ID is ak022c4o9ui7 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak022c4o9ui7/executive.
2022/09/21 04:02:30 62.927 -150.781 106.3 4.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2022/09/21 04:02:30:0 62.93 -150.78 106.3 4.1 Alaska Stations used: AK.BPAW AK.CAST AK.CUT AK.DHY AK.GHO AK.H22K AK.I21K AK.J19K AK.J20K AK.K20K AK.KNK AK.KTH AK.L19K AK.L20K AK.MCK AK.MLY AK.NEA2 AK.PPLA AK.PWL AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AK.SSN AT.PMR AV.STLK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.50e+22 dyne-cm Mw = 4.05 Z = 108 km Plane Strike Dip Rake NP1 50 81 87 NP2 250 10 110 Principal Axes: Axis Value Plunge Azimuth T 1.50e+22 54 316 N 0.00e+00 3 50 P -1.50e+22 36 143 Moment Tensor: (dyne-cm) Component Value Mxx -3.68e+21 Mxy 2.23e+21 Mxz 1.07e+22 Myy -1.13e+21 Myz -9.25e+21 Mzz 4.81e+21 -------------- ----###############--- ---#######################-- --###########################- --##############################-# --##############################---- -########## #################------- --########## T ###############---------- -########### ##############----------- -###########################-------------- -#########################---------------- -#######################------------------ -####################--------------------- ##################---------------------- ################------------------------ ############-------------- --------- ########----------------- P -------- ####-------------------- ------- ------------------------------ ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 4.81e+21 1.07e+22 9.25e+21 1.07e+22 -3.68e+21 -2.23e+21 9.25e+21 -2.23e+21 -1.13e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220921040230/index.html |
STK = 250 DIP = 10 RAKE = 110 MW = 4.05 HS = 108.0
The NDK file is 20220921040230.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 30 40 -105 3.16 0.1881 WVFGRD96 4.0 255 75 -45 3.19 0.2036 WVFGRD96 6.0 90 75 35 3.23 0.2204 WVFGRD96 8.0 160 50 -25 3.32 0.2413 WVFGRD96 10.0 175 55 20 3.36 0.2560 WVFGRD96 12.0 175 60 25 3.40 0.2658 WVFGRD96 14.0 175 60 25 3.44 0.2680 WVFGRD96 16.0 180 60 30 3.46 0.2678 WVFGRD96 18.0 180 60 30 3.49 0.2666 WVFGRD96 20.0 350 65 15 3.52 0.2666 WVFGRD96 22.0 190 70 25 3.55 0.2697 WVFGRD96 24.0 205 75 25 3.60 0.2721 WVFGRD96 26.0 205 80 25 3.62 0.2729 WVFGRD96 28.0 5 60 0 3.61 0.2745 WVFGRD96 30.0 0 65 -20 3.63 0.2789 WVFGRD96 32.0 355 60 -20 3.65 0.2876 WVFGRD96 34.0 355 60 -20 3.67 0.2977 WVFGRD96 36.0 350 70 10 3.67 0.3135 WVFGRD96 38.0 350 70 15 3.70 0.3277 WVFGRD96 40.0 350 60 15 3.77 0.3445 WVFGRD96 42.0 180 65 35 3.80 0.3438 WVFGRD96 44.0 345 65 -5 3.82 0.3431 WVFGRD96 46.0 180 65 35 3.83 0.3416 WVFGRD96 48.0 175 60 25 3.84 0.3456 WVFGRD96 50.0 175 50 20 3.85 0.3585 WVFGRD96 52.0 175 50 20 3.86 0.3701 WVFGRD96 54.0 175 45 20 3.88 0.3821 WVFGRD96 56.0 170 45 15 3.89 0.3928 WVFGRD96 58.0 160 45 20 3.93 0.4034 WVFGRD96 60.0 30 80 55 3.94 0.4156 WVFGRD96 62.0 35 80 60 3.96 0.4284 WVFGRD96 64.0 35 80 60 3.96 0.4400 WVFGRD96 66.0 35 80 60 3.97 0.4514 WVFGRD96 68.0 35 80 60 3.98 0.4644 WVFGRD96 70.0 35 80 60 3.99 0.4781 WVFGRD96 72.0 40 85 80 4.01 0.4958 WVFGRD96 74.0 40 85 80 4.02 0.5127 WVFGRD96 76.0 230 5 90 4.03 0.5238 WVFGRD96 78.0 235 5 100 4.03 0.5383 WVFGRD96 80.0 240 5 100 4.04 0.5500 WVFGRD96 82.0 45 85 85 4.04 0.5644 WVFGRD96 84.0 245 10 110 4.03 0.5749 WVFGRD96 86.0 45 80 85 4.04 0.5870 WVFGRD96 88.0 245 10 110 4.04 0.5953 WVFGRD96 90.0 45 80 85 4.04 0.6040 WVFGRD96 92.0 45 80 85 4.04 0.6131 WVFGRD96 94.0 245 10 110 4.05 0.6200 WVFGRD96 96.0 245 10 105 4.05 0.6245 WVFGRD96 98.0 45 80 85 4.05 0.6296 WVFGRD96 100.0 45 80 85 4.05 0.6334 WVFGRD96 102.0 45 80 85 4.05 0.6355 WVFGRD96 104.0 250 10 110 4.05 0.6388 WVFGRD96 106.0 45 80 85 4.05 0.6398 WVFGRD96 108.0 250 10 110 4.05 0.6402 WVFGRD96 110.0 45 80 85 4.05 0.6396 WVFGRD96 112.0 50 80 85 4.05 0.6384 WVFGRD96 114.0 250 10 110 4.06 0.6383 WVFGRD96 116.0 50 80 85 4.05 0.6357 WVFGRD96 118.0 250 10 110 4.06 0.6342 WVFGRD96 120.0 50 80 85 4.05 0.6317 WVFGRD96 122.0 50 80 85 4.05 0.6278 WVFGRD96 124.0 50 80 85 4.05 0.6254 WVFGRD96 126.0 50 80 85 4.05 0.6222 WVFGRD96 128.0 50 80 85 4.05 0.6189 WVFGRD96 130.0 250 10 110 4.06 0.6166 WVFGRD96 132.0 250 10 110 4.06 0.6115 WVFGRD96 134.0 250 10 110 4.06 0.6070 WVFGRD96 136.0 50 80 85 4.05 0.6015 WVFGRD96 138.0 50 80 85 4.05 0.5973 WVFGRD96 140.0 50 80 85 4.05 0.5918 WVFGRD96 142.0 50 80 85 4.05 0.5877 WVFGRD96 144.0 50 80 85 4.05 0.5818 WVFGRD96 146.0 250 10 110 4.05 0.5766 WVFGRD96 148.0 50 80 85 4.05 0.5722
The best solution is
WVFGRD96 108.0 250 10 110 4.05 0.6402
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00