The ANSS event ID is ak022c1bhn1i and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak022c1bhn1i/executive.
2022/09/19 01:15:30 64.737 -149.235 18.9 4.5 Alaska
USGS/SLU Moment Tensor Solution
ENS 2022/09/19 01:15:30:0 64.74 -149.24 18.9 4.5 Alaska
Stations used:
AK.BPAW AK.CAST AK.CCB AK.CUT AK.DHY AK.DIV AK.FIRE AK.G23K
AK.G24K AK.G27K AK.GHO AK.H21K AK.H22K AK.H24K AK.HARP
AK.HDA AK.I21K AK.I23K AK.I26K AK.I27K AK.J19K AK.J20K
AK.J25K AK.K20K AK.K24K AK.KLU AK.KNK AK.L19K AK.L20K
AK.L22K AK.L26K AK.M19K AK.M26K AK.MCK AK.MLY AK.NEA2
AK.PAX AK.POKR AK.PPLA AK.PWL AK.RC01 AK.RIDG AK.RND AK.SAW
AK.SCM AK.SCRK AK.SSN AK.TOLK AK.WRH AT.MENT AT.PMR AV.SPCP
AV.STLK IM.IL31 IU.COLA US.EGAK
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 7.59e+22 dyne-cm
Mw = 4.52
Z = 17 km
Plane Strike Dip Rake
NP1 185 75 -40
NP2 287 52 -161
Principal Axes:
Axis Value Plunge Azimuth
T 7.59e+22 15 241
N 0.00e+00 48 348
P -7.59e+22 38 139
Moment Tensor: (dyne-cm)
Component Value
Mxx -9.56e+21
Mxy 5.32e+22
Mxz 1.87e+22
Myy 3.39e+22
Myz -4.08e+22
Mzz -2.44e+22
--------######
-----------###########
-------------###############
--------------################
---------------###################
-------#########-###################
--##############--------##############
-################------------###########
#################---------------########
#################------------------#######
#################--------------------#####
#################---------------------####
#################-----------------------##
################-----------------------#
### ##########------------------------
## T ##########----------- ---------
# ##########----------- P --------
#############----------- -------
###########-------------------
###########-----------------
########--------------
#####---------
Global CMT Convention Moment Tensor:
R T P
-2.44e+22 1.87e+22 4.08e+22
1.87e+22 -9.56e+21 -5.32e+22
4.08e+22 -5.32e+22 3.39e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220919011530/index.html
|
STK = 185
DIP = 75
RAKE = -40
MW = 4.52
HS = 17.0
The NDK file is 20220919011530.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2022/09/19 01:15:30:0 64.74 -149.24 18.9 4.5 Alaska
Stations used:
AK.BPAW AK.CAST AK.CCB AK.CUT AK.DHY AK.DIV AK.FIRE AK.G23K
AK.G24K AK.G27K AK.GHO AK.H21K AK.H22K AK.H24K AK.HARP
AK.HDA AK.I21K AK.I23K AK.I26K AK.I27K AK.J19K AK.J20K
AK.J25K AK.K20K AK.K24K AK.KLU AK.KNK AK.L19K AK.L20K
AK.L22K AK.L26K AK.M19K AK.M26K AK.MCK AK.MLY AK.NEA2
AK.PAX AK.POKR AK.PPLA AK.PWL AK.RC01 AK.RIDG AK.RND AK.SAW
AK.SCM AK.SCRK AK.SSN AK.TOLK AK.WRH AT.MENT AT.PMR AV.SPCP
AV.STLK IM.IL31 IU.COLA US.EGAK
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 7.59e+22 dyne-cm
Mw = 4.52
Z = 17 km
Plane Strike Dip Rake
NP1 185 75 -40
NP2 287 52 -161
Principal Axes:
Axis Value Plunge Azimuth
T 7.59e+22 15 241
N 0.00e+00 48 348
P -7.59e+22 38 139
Moment Tensor: (dyne-cm)
Component Value
Mxx -9.56e+21
Mxy 5.32e+22
Mxz 1.87e+22
Myy 3.39e+22
Myz -4.08e+22
Mzz -2.44e+22
--------######
-----------###########
-------------###############
--------------################
---------------###################
-------#########-###################
--##############--------##############
-################------------###########
#################---------------########
#################------------------#######
#################--------------------#####
#################---------------------####
#################-----------------------##
################-----------------------#
### ##########------------------------
## T ##########----------- ---------
# ##########----------- P --------
#############----------- -------
###########-------------------
###########-----------------
########--------------
#####---------
Global CMT Convention Moment Tensor:
R T P
-2.44e+22 1.87e+22 4.08e+22
1.87e+22 -9.56e+21 -5.32e+22
4.08e+22 -5.32e+22 3.39e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220919011530/index.html
|
Regional Moment Tensor (Mwr) Moment 7.789e+15 N-m Magnitude 4.53 Mwr Depth 17.0 km Percent DC 75% Half Duration - Catalog US Data Source US 1 Contributor US 1 Nodal Planes Plane Strike Dip Rake NP1 284 58 -170 NP2 188 81 -33 Principal Axes Axis Value Plunge Azimuth T 8.259e+15 N-m 16 240 N -1.047e+15 N-m 56 355 P -7.212e+15 N-m 29 141 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 340 45 -85 4.12 0.2908
WVFGRD96 2.0 335 45 -85 4.25 0.3862
WVFGRD96 3.0 190 90 -35 4.21 0.3730
WVFGRD96 4.0 190 90 -45 4.28 0.4225
WVFGRD96 5.0 190 90 -50 4.31 0.4785
WVFGRD96 6.0 190 90 -45 4.33 0.5342
WVFGRD96 7.0 190 90 -40 4.35 0.5820
WVFGRD96 8.0 190 90 -45 4.40 0.6238
WVFGRD96 9.0 10 90 45 4.42 0.6650
WVFGRD96 10.0 10 90 45 4.44 0.6976
WVFGRD96 11.0 10 90 40 4.45 0.7244
WVFGRD96 12.0 185 80 -40 4.47 0.7498
WVFGRD96 13.0 185 80 -40 4.48 0.7676
WVFGRD96 14.0 185 80 -40 4.49 0.7801
WVFGRD96 15.0 185 80 -40 4.50 0.7881
WVFGRD96 16.0 185 75 -40 4.51 0.7926
WVFGRD96 17.0 185 75 -40 4.52 0.7939
WVFGRD96 18.0 185 80 -40 4.53 0.7923
WVFGRD96 19.0 185 80 -40 4.53 0.7884
WVFGRD96 20.0 185 80 -35 4.55 0.7827
WVFGRD96 21.0 185 80 -40 4.55 0.7763
WVFGRD96 22.0 185 80 -40 4.56 0.7670
WVFGRD96 23.0 185 80 -40 4.57 0.7566
WVFGRD96 24.0 185 80 -40 4.57 0.7448
WVFGRD96 25.0 185 80 -40 4.58 0.7325
WVFGRD96 26.0 185 80 -35 4.59 0.7193
WVFGRD96 27.0 185 80 -40 4.59 0.7054
WVFGRD96 28.0 185 80 -40 4.59 0.6915
WVFGRD96 29.0 185 80 -35 4.60 0.6767
The best solution is
WVFGRD96 17.0 185 75 -40 4.52 0.7939
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00